на главную | войти | регистрация | DMCA | контакты | справка | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


моя полка | жанры | рекомендуем | рейтинг книг | рейтинг авторов | впечатления | новое | форум | сборники | читалки | авторам | добавить



(анализ основных понятий: система отсчета)


Известно, что многословные объяснения далеко не лучшие, и потому автора мучают сомнения. Не покажется ли только что проведенный кропотливый и скучноватый анализ излишним? В конце концов все содержание предыдущей главы можно свести к нескольким фразам:

говорить о механическом движении какого-либо тела имеет смысл, только если указана система отсчета, связанная с какими-либо реальными телами.

Снова повторы и традиционные общие замечания.

Выбор системы отсчета определяется в конечном итоге только тем, в какой системе описание данного явления более удобно.

Если существует такая замечательная система отсчета и в ней законы природы выглядят как-то особенно просто (или, точнее, выглядят как-то совершенно по-другому, чем в любой другой), то такую систему имеет смысл назвать абсолютной и, соответственно, говорить об абсолютном движении.

Существует ли такая абсолютная система или нет — осталось неизвестным.

При этом вся тяжесть рассуждений — так сказать, линия главного удара — была сосредоточена на разъяснении первого положения.

Может быть, теряя столько слов и времени, чтобы расшифровать, «по-видимому, всем знакомое» понятие движения, мы ломились в открытую дверь, запутываясь в бесконечных оговорках, уточнениях и пояснениях? Может быть, все предыдущее, как говорится, идет от лукавого? Пожалуй, все-таки нет.

Позвольте (уже в который раз!) напомнить, что самые серьезные проблемы очень часто скрыты как раз за тем, что кажется самоочевидным. Первыми из ученых это поняли, вероятно, математики (пятый постулат Эвклида). Физики в наши дни также признают, что нет таких вопросов, от которых можно отмахнуться со словами: «Это совершенно очевидно». Однако для физиков стремление к безупречной логике все же не так естественно и привычно, как для математиков.

В подтверждение этого несколько обидного тезиса разрешите привести один пример, непосредственно связанный с понятием движения.

Очень любопытный пример.

Вероятно, почти все слыхали, что астрономы совершенно твердо установили факт вращения нашей Галактики вокруг какой-то оси, проходящей через ее центр.

Так вот, в популярных, а часто и в специальных книгах пишут о вращении Галактики, ни слова не говоря, в какой именно системе отсчета она вращается. Но без указания системы отсчета слова о вращении Галактики лишены всякого содержания.

А как ввести систему отсчета, описывающую Галактику? Чтобы убедиться в том, что предложен не совсем праздный вопрос, представьте себе вселенную как далеко рассеянные друг от друга рои пчел, повисшие в «пустом» пространстве. Каждый такой рой — одна из галактик. А теперь попробуйте разумно ввести систему отсчета. Она, естественно, должна быть связана с реальными телами. Но ведь, кроме пчелиных роев, в нашем распоряжении ничего нет. «Вбивать» координатные оси в пустое пространство нельзя. Систему отсчета нужно как-то определить, используя «подручные материалы» — пчелиные рои[20].

Мы не будем сейчас говорить о том, на основании каких именно фактов смогли заключить, что в некоторой системе отсчета все пчелы нашего роя — нашей Галактики — участвуют в закономерном движении — вращении. Это завело бы слишком далеко в сторону. Можно заметить только, что ни один физический опыт, поставленный на самой Земле, не помогает обнаружить вращение Галактики, и вывод сделан только на основании наблюдения относительного движения звезд.

Нас интересует другое.

Как была введена система отсчета? С какими звездами — «пчелами» — она связана? Как, не используя никаких иных объектов, кроме пчел самого роя, «вбить» в пространство те три взаимно перпендикулярных стержня, которые образуют систему координат?

На все это также разрешите ответить уклончиво.

Заметим, что напрашивающаяся мысль: «Эта система отсчета как-то связана с другими галактиками», — ошибочна. Наша «загадочная» система определяется только звездами нашей Галактики.

Как именно была выбрана система, мы разбирать не будем. Ограничимся только утверждением, что такую систему можно определить. Можно «вколотить» некие условные мысленные «гвозди» в мировое пространство, к которым «привязывают» систему отсчета.

Сейчас важно даже не то, как была введена система отсчета, а то, что это совершенно необходимо сделать, прежде чем говорить о каком-либо движении (в нашем случае вращении) звезд Галактики. Важно представлять, что выбор системы — центральный, основной вопрос. Только когда есть система отсчета, слова «Галактика вращается» имеют смысл.

После этих общих замечаний дидактического характера вернемся к законам Ньютона.

Проблемой № 1 при обсуждении законов движения оказывается вопрос: «В какой системе отсчета формулируются эти законы?»

И надо сказать, что этот первый вопрос является, может быть, самым неприятным.

Ньютон ответил просто. Он ввел некую абсолютную систему отсчета — абсолютное пространство и, соответственно, абсолютное движение. Но, как помните, определение Ньютона лишено физического содержания.

Однако определение… не более чем определение. Ведь сам же Ньютон предложил способ, как находить «абсолютное движение» (центробежные силы) и, следовательно, как найти абсолютную систему отсчета. Если так, то в конце-концов вся проблема сводится к тому, что определение неудачно и его следует изменить.


Очевидное? Нет, еще неизведанное…

В таком случае не было бы особого повода для волнений. Определение Ньютона изменили бы, но абсолютная система отсчета осталась бы в механике.

Дело, однако, в том, что Ньютон ошибался по существу.

Снова провозглашается, а затем исследуется принцип относительности Галилея.

Нет такого опыта из области механики, который позволил бы выделить какую-нибудь избранную систему отсчета. И как раз законы механики, законы Ньютона убеждают в этом.

Это мы сейчас и увидим. Откажемся пока от попыток логически безупречно определять ту систему отсчета (или, может быть, тот класс систем отсчета), для которой (которых) справедливы законы Ньютона.

Предположим просто, что, экспериментально исследуя движение тел, мы нашли систему отсчета, где в пределах точности наших измерений соблюдаются законы Ньютона. Такую систему отсчета мы назовем инерциальной системой.

Делается первая попытка дать определение инерциальной системы. И его стоит запомнить.

Ньютон сформулировал свои законы в некоей абсолютной системе отсчета. Что это за система, мы не знаем. И пока не хотим обсуждать, существует она или нет. Введя же инерциальную систему, внешне мы также не сделали ничего значительного, просто заменили одни слова другими. Вместо «абсолютная система» написали «инерциальная система».

Но, по существу, наша позиция совершенно отлична от ньютоновой. Мы апеллируем к опыту, а не к абстрактным понятиям. Нашу систему мы отыскали опытным путем и назвали ее так, как нам нравится.

А теперь посмотрим. Если в мире существует одна-единственная инерциальная система (других нет), то разумно считать ее абсолютной системой отсчета. Но если таких инерциальных систем бесчисленное множество, придется признать, что по крайней мере для механических явлений говорить о существовании абсолютной системы бессмысленно.

Вспомним теперь законы Ньютона и сформулируем их в некоторой инерциальной системе.

Предварительный анализ первого закона механики.

Первый закон — «В инерциальной системе отсчета всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не принуждается приложенными силами изменить это состояние».

Стоит обратить особое внимание, что первый закон механики торжественно провозглашает для свободного тела, рассматриваемого в инерциальной системе, полное равноправие состояний покоя и равномерного прямолинейного движения.

Довольно очевидно, что если ввести какую-либо другую систему отсчета, равномерно и прямолинейно движущуюся относительно нашей инерциальной системы, то в этой новой системе свободное тело также сохраняет свою скорость неизменной. Таким образом, первый закон Ньютона и в этой «новой» системе имеет точно такой же вид, как и в «старой» инерциальной системе.

Сложный, но существенный отрывок.

И напротив, если для описания состояния свободного тела использовать систему отсчета, ускоренно движущуюся относительно нашей инерциальной системы, то в этой «ускоренной» системе отсчета поведение свободного тела уже не будет описываться первым законом Ньютона. В такой «нехорошей» системе отсчета свободное тело не будет находиться в состоянии покоя или равномерного прямолинейного движения. Оно будет двигаться с ускорением.

Выводы.

Можно сделать вывод: если найдена одна система отсчета, в которой для свободного тела выполняется первый закон Ньютона, то этот же закон будет соблюдаться в любой из бесконечного числа систем отсчета, равномерно и прямолинейно движущихся относительно первичной системы.

И с другой стороны, существует бесконечное множество систем отсчета, в которых первый закон Ньютона не соблюдается. А именно: любая из систем, ускоренно движущихся относительно инерциальной системы.

Более строгие, но несколько абстрактные рассуждения, подтверждающие нашу точку зрения.

Возможно, предыдущие рассуждения оставили чувство неудовлетворенности. Ведь мы сами утверждали, что необходимо добиваться полной ясности и четкости, даже говоря о самых очевидных вещах. Поэтому, как ни очевидно утверждение: «Если первый закон Ньютона выполняется в одной системе отсчета, то он выполняется и во всех системах отсчета, равномерно и прямолинейно движущихся относительно нашей», — его нужно обосновать.

Схема рассуждений должна быть примерно такой. Пусть дана какая-то система отсчета: обозначим ее для удобства, скажем, буквой K. В ней мы умеем описывать движение тел и предметов при помощи законов Ньютона. Так, если изучаемое тело изолировано и свободно, оно в нашей системе либо покоится, либо движется с постоянной скоростью V.


Очевидное? Нет, еще неизведанное…

Но вот есть другая система отсчета, скажем K1, которая движется относительно К равномерно и прямолинейно с известной нам скоростью v.

При этих условиях мы должны научиться определять положение изучаемого тела в новой системе отсчета. Ведь чтобы ответить на вопрос, каков характер движения тела в новой системе K1, надо знать его координаты в этой системе в любой момент времени.

Иными словами, нужно найти закон перехода от одной системы отсчета к другой.

Найти этот закон довольно просто в самом общем случае, но мы рассмотрим наипростейший, а именно: во-первых, когда система K1 движется с постоянной скоростью вдоль оси x системы K; и во-вторых, когда скорость нашего свободного тела V направлена также вдоль оси x системы K.

Тогда, если в момент t0 = 0 системы отсчета совпадали, то за время t начало координат системы K1 «уедет» на расстояние S = vt. Как видно из чертежа, координаты тела в новой системе можно найти, зная координаты в старой системе и используя очевидные соотношения:

x1 = х – vt;

у1 = у;

z1 = z.

Прошу поверить на слово, что если рассматривать общий случай (скорости V и v направлены не вдоль осей и не совпадают по направлениям), наши выводы останутся правильными.

Но вернемся к примеру. В каждый данный момент времени в старой системе отсчета координаты нашего тела определяются соотношениями:

x = x0 + Vt;

y = y0;

z = z0.

Здесь x0, y0, z0 — координаты тела в начальный момент t = 0.

Вспомнив формулы для перехода от одной системы к другой, получаем:

x1 = x0 + (V – v)t;

у1 = у0;

z1 = z0.

Итак, в новой системе тело снова двигается равномерно и прямолинейно вдоль оси x1, но уже с новой скоростью V1 = V – v.

Когда читатель познакомится с преобразованиями Лоренца, стоит еще раз взглянуть на эти формулы.

Иначе говоря, мы доказали, что если первый закон Ньютона справедлив в системе K, то он справедлив и в K1.

Точно так же (хотя с формальной стороны это несколько сложнее) можно показать, что если K1 движется неравномерно или непрямолинейно относительно K, то тело, которое в K покоилось или двигалось с постоянной скоростью, в системе K1 будет двигаться уже неравномерно или непрямолинейно.

Очень важные соображения.

И тем не менее в наших рассуждениях есть очень существенный пробел. Когда мы переходили от одной системы отсчета к другой, мы молчаливо допускали, что время в обеих системах течет одинаково. Если внимательно проследить за выводом, то можно увидеть, что в выражении x1 = x0 + (V – v)t величина t по своему смыслу означает время, измеренное в системе K. А строго говоря, чтобы описывать движение тела в системе K1 мы должны вместо t использовать t1, то есть время, измеренное в системе K1. Может быть, в системе K1 к моменту определения координат тело прошло 5 минут, а в системе K только 4?! Но мы молчаливо предполагали, что t1 = t.

Почему мы сделали это предположение?

Только потому, что повседневный опыт убеждает нас в его справедливости[21].

Однако возникает законный вопрос, что вообще означают слова «время, измеренное в одной системе, время, измеренное в другой системе», какой смысл вкладывается в эти понятия?

Какой физический процесс соответствует символам t1 и t, а, кстати, заодно и x1 и x?

Символы — это ведь не более чем символы. Они получают жизнь только тогда, когда мы однозначно определим, как именно можно отыскать те физические величины, которые они описывают.

Таким образом, вопрос о переходе от одной системы отсчета к другой возвращает нас снова к проблеме измерения времени.

Поэтому логично и естественно дать именно сейчас рецепт для измерения и координат и времени в данной системе.

1. Координата или длина в системе K определяется сравнением ее с масштабной линейкой, неподвижной в этой системе.

2. Время в системе К определяется показаниями часов, покоящихся в данной системе.

В другой координатной системе K1 необходимо иметь часы и масштаб, которые покоятся в этой системе, и все измерения производить именно этим масштабом и этими часами.

Как видите, x1 и x, или t1 и t, соответствуют, вообще говоря, разным физическим процессам — измерениям, которые проводятся в разных физических условиях. Но достаточно предположить существование сигналов, распространяющихся с бесконечной скоростью, чтобы убедиться в том, что t1 = t.

Не будем далее углубляться в дебри анализа. Мы зафиксировали наше предположение и объяснили смысл значков x и x1, t и t1. Пока этого достаточно.

Итак, формулы перехода от одной системы K к другой K1, равномерно и прямолинейно движущейся вдоль оси x первой системы, имеют вид:

x1 = x – vt;

y1 = y;

z1 = z;

t1 = t.

Это преобразование координат и времени при переходе от одной системы к другой называют преобразованием Галилея.

Естественно расширить вопрос. А как обстоит дело с остальными законами механики? Будут ли справедливы в системе K1 все остальные законы в том случае, если они соблюдаются в системе K? Говоря другими словами, будет ли система K1 также инерциальной системой отсчета? Оказывается, что да, будет.

Если K — инерциальная система, то любая система отсчета (K1), равномерно и прямолинейно движущаяся относительно K, также инерциальна.

Выражая ту же мысль другими словами, говорят: законы механики инвариантны (неизменны) по отношению к преобразованию Галилея. Но если только K1 движется ускоренно относительно K, то в ней законы механики имеют другой вид.

Вот утверждения: инерциальных систем отсчета бесконечно много, при описании механических явлений все они равноправны, законы механики во всех инерциальных системах отсчета имеют один и тот же вид, — как раз и составляют принцип относительности Галилея — важнейший принцип механики Ньютона.

Снова принцип относительности Галилея.

Но не будем обольщаться. Мы не доказали принцип относительности совершенно строго. Мы проделали только часть работы — обосновали инвариантность (дословно — неизменяемость) первого закона Ньютона при переходе от одной инерциальной системы к другой. Инвариантность других законов Ньютона мы провозгласили. (Собственно говоря, мы их еще и не сформулировали.)


Очевидное? Нет, еще неизведанное…

Однако если принять преобразование Галилея и четко сформулировать второй и третий законы Ньютона, то доказательство инвариантности этих законов во всех инерциальных системах отсчета — задача по своему характеру чисто математическая. Поэтому не будем этим заниматься, а постараемся понять физическое содержание остальных законов Ньютона, после чего (снова и снова) вернемся к первому закону и к принципу относительности Галилея.

Уже в первом законе механики встречается понятие силы. По существу, все остальные законы механики как раз и расшифровывают это понятие.

Опять уклонимся от идеально четких определений и формулировок, так как попытка дать строгое, аксиоматическое определение понятия силы завела бы слишком далеко. Просто постараемся отметить самое характерное.

Сила, вообще говоря, характеризует взаимодействие тел между собой[22].

Кое-что о силе.

Однако сказать, что сила характеризует взаимодействие, значит сказать очень мало. Нам надо знать: как проявляется это взаимодействие?

Первое, что можно утверждать, — это следующее.

Если на данное тело действовать силой, то тело приобретает ускорение.

Если одну и ту же силу прикладывать к различным телам, ускорения, полученные этими телами, также, вообще говоря, будут различны.

Поскольку сила (взаимодействие) проявляется в появлении ускорения, а ускорение характеризуется не только величиной, но и направлением, ясно, что сила также характеризуется не только своей абсолютной величиной, но и направлением своего действия. Оказывается, что сила — вектор[23].

Вы, возможно, заметили, что для того, чтобы предыдущие рассуждения были содержательны, мы должны уметь измерять силу, прикладывать равные силы к разным телам и т. д.

Чтобы силу можно было измерять, полагают, что сила, действующая на данное тело, пропорциональна тому ускорению, которое получает это тело: F-> = ma->.

Величина m — масса — характеризует стремление тела в отсутствии взаимодействий оставаться в инерциальной системе в состоянии покоя или равномерного прямолинейного движения. Она отражает инерцию тела, его «косность».

Ответ на вопрос о количественном взаимодействии тел между собой и, в частности, ответ на вопрос: «Как прикладывать к разным телам равные силы?» — дает третий закон Ньютона:

«Действие равно противодействию, или иначе — действия двух тел друг на друга равны и противоположно направлены».

F->1;2 = –F->2;1

Замечания о массе в классической механике.

Что касается меры инерции — массы, то это замечательная, удивительная величина. Во-первых, масса — аддитивна, то есть, если сложить два тела («слепить вместе два пластилиновых шарика»), то, оказывается, их суммарная масса равна сумме их масс: M = m1 + m2.

Многие читатели, возможно, подумают, что аддитивность массы настолько же очевидна, как и то, что «Волга впадает в Каспийское море». Но если задуматься над этим, придется признать, что нет никаких оснований заранее ожидать, что масса обладает таким свойством. Еще и еще раз стоит подчеркнуть, что, как правило, очевидным представляется привычное, хотя «привычное» и «очевидное» несколько разные понятия.

Другое и, может быть, не менее замечательное свойство массы — ее неизменность при переходе от одной инерциальной системы к другой. Другими словами, последнее утверждение можно выразить так: «Масса тела не зависит от скорости его движения»[24].

Масса тела — мера его инертности — в механике Ньютона совершенно не зависит от тех разнообразных физических условий, в которых находится тело. Можно изменять температуру, давление, местоположение тела, можно помещать его в электромагнитное или гравитационное поле — масса (или инертность) останется неизменной.

Самые различные по своей природе тела, между которыми нет, казалось бы, абсолютно ничего общего, получают одну общую характеристику — инертность (массу). А с другой стороны, второй закон Ньютона позволяет единообразно описывать взаимодействия тел самой различной природы.

Если рассматривается движение тел с переменной массой, второй закон Ньютона приобретает более общую форму:

Очевидное? Нет, еще неизведанное…

Величина mv = p называется импульсом, или количеством движения тела.

В том случае, если вы не удовлетворены этими отрывочными замечаниями, можно разрубить узел, — считая массу первичным понятием.

Тогда второй закон Ньютона можно рассматривать как определение силы.

Если вас не удовлетворяет и это, можно порекомендовать обратиться к более серьезным работам, где вопросы аксиоматики механики разбираются детальнее[25]. Мы не будем дальше исследовать эту сторону законов Ньютона.

Но законы механики связаны с одним, может быть, не столь непонятным, сколь удивительным фактом, и об этом нужно сказать.

Когда мы говорили о законах механики, само собой подразумевалось, что все рассмотрение проводится в инерциальной системе отсчета.

И теперь настал момент снова спросить: «Что же такое инерциальная система отсчета?»

Попытка строго определить понятие инерциальной системы. «Порочный круг».

В начале главы мы сказали, что, воздерживаясь от строгих определений, удовлетворимся тем, что экспериментально проверим, выполняются или нет в данной системе отсчета законы Ньютона.

Но, проверяя на опыте, скажем, первый закон, мы сталкиваемся с такой проблемой: как установить, что на тело не действует никакая сила, что тело свободно?

Единственный логически строгий ответ таков: мы видим, что на данное тело не действуют силы, если в инерциальной системе отсчета оно покоится или находится в состоянии равномерного прямолинейного движения.

Но как раз этот единственный ответ и не годится потому, что мы не знаем, мы как раз хотим узнать, инерциальна наша система отсчета или нет.

Такая попытка определить инерциальную систему приводит нас к печальной ситуации «порочного круга».

И вполне понятно, что, пытаясь логически безупречно определить понятие инерциальной системы отсчета, использовав законы Ньютона, которые, в свою очередь, сформулированы только для инерциальных систем, мы попадали в «порочный круг».


Очевидное? Нет, еще неизведанное…

Но сейчас наши желания значительно скромнее. Мы махнули рукой на логику. Мы хотим как-то чисто опытным путем с достаточной достоверностью найти: инерциальна ли данная система отсчета или нет?

И у нас нет лучшего рецепта, чем положиться на интуитивное представление о силе.

Не претендуя на строгость, скажем: что «если какое-то тело отнесено от всех остальных „достаточно далеко“ и никакие силы на него не действуют — тело свободно».

Тогда, если это тело равномерно и прямолинейно движется или покоится в какой-то системе отсчета, эта система инерциальна[26].

Что значат слова «достаточно далеко»? Ну, они просто означают «очень далеко». А в каждом конкретном случае можно как-то приблизительно сказать, на какое именно расстояние.

Конечно, эти замечания малоутешительны. О каком-либо логически строгом определении инерциальной системы говорить не приходится. Но ничего лучшего предложить нельзя. И можно отчасти успокаивать себя тем, что наше определение свободного тела очень наглядно и физично.

Скажем, исследуя движение планет вокруг Солнца, можно надеяться, что все окружающие солнечную систему звезды никак не влияют на движения планет и силы, действующие на планеты, обусловлены только их взаимодействием с Солнцем и между собой. Сделав это предположение и анализируя результаты наблюдений, мы устанавливаем, что в системе отсчета, связанной с Солнцем и небом неподвижных звезд, выполняются законы Ньютона, — и, значит, эта система инерциальна.

Система отсчета «небо неподвижных звезд» — эталон инерциальной системы отсчета.

Надо признать, однако, что наша система — эталон — в известном смысле фиктивна. Небо неподвижных звезд не остается неизменным. Напротив, совершенно точно установлено, что звезды движутся относительно друг друга с колоссальными скоростями, порядка десятков и сотен километров в секунду. Поэтому взаимное расположение звезд непрерывно изменяется. Но они так страшно далеки от нас, что видимое их положение остается неизменным в течение многих-многих лет.

Тот, кто когда-нибудь наблюдал, лежа на спине, высоко плывущие облака, сразу вспомнит, что часто облако кажется неподвижным, и только через несколько минут, когда оно уходит из поля зрения, соображаешь, что оно движется. Требуются некоторые усилия рассудка, чтобы понять, что скорость движения облака может быть весьма велика.

Можно легко прикинуть, на какую величину изменится за 100 лет угловое направление на звезду, которая движется со скоростью, скажем, 100 километров в секунду, по сфере, в центре которой находится Земля, а радиус сферы, допустим, 10 световых лет.

Этот пример приблизительно соответствует реальным расстояниям ближайших звезд и реальным скоростям их движения относительно Земли.

А вот уже совершенно точные данные о наибольших угловых смещениях звезд, наблюдаемых за год.


в которой автор сначала рассуждает, а под конец удивляется; причем призывает благосклонного читателя последовать его примеру | Очевидное? Нет, еще неизведанное… | Годичное смещение