home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add

реклама - advertisement



СУММА ТЕХНОЛОГИЙ

Вот и настал XXI век, век геополитических стратегов, политтехнологов и менеджеров, «эффективных» и не очень. Роль личности объективно снизилась (если не учитывать растущую субъективную некомпетентность высшего слоя менеджеров — здесь-то в генерации иррационального роль личности повысилась: глупости невозможно предсказать) не только в обществе, но и в технике. Все больше бал правят технологии. Технологии задают вектор развития, в том числе и при разработке авиационных двигателей. Практически все авиационные двигатели XX века были спроектированы с помощью термодинамического подхода, т. е. с использованием интегральных (осредненных по объему) соотношений, что, в свою очередь, требовало большого объема экспериментальных работ для исследования локальных эффектов нагружения деталей. И сама термодинамика, и сопромат (сопротивление материалов), и теплопередача, использовавшиеся при проектировании двигателей в доинформационную эпоху (до создания ЭВМ со скоростями вычислений порядка петафлопс, т. е. 1015 логических операций в секунду) суть термодинамические методы. А фактическое разрушение всегда начинается с локальной трещины.

Таким образом, для повышения уровня проектирования, т. е. более эффективного использования возможностей конструкционных материалов, а следовательно, и уменьшения массы двигателя и повышения его кпд необходимо уметь моделировать процессы нагружения на локальном уровне, т. е распределенные по объему нагрузки с учетом реальной геометрии. Но как только такая задача поставлена, она влечет за собой необходимость столь же подробного моделирования граничных условий нагружения, т. е. соответствия уровней постановок. В нашем случае это в первую очередь решение газодинамических задач обтекания в трехмерной, а иногда и в четырехмерной (с учетом параметра времени) постановках.

Более того, локальность описания граничных условий чаще всего носит сугубо нелинейный характер. Что такое нелинейность? Это в первую очередь большой градиент изменения свойств среды по геометрической координате и времени. Например, резкое изменение нагрузки при наличии концентрации напряжения в случае неоднородностей свойств (постороннее включение в материале, геометрическая неоднородность, связанная с малым радиусом закругления кромок, и т. д.). Аналогично и в газовом потоке: например, наличие фронта ударной волны или пламени, где параметры потока (давление, температура, концентрация реагентов) сильно изменяются на малом протяжении. Но ведь… и сами давление и температура суть осредненные, термодинамические параметры. На самом деле они не существуют. Это не что иное, как уже осредненное воздействие (давление) или кинетическая энергия (температура) движущихся молекул. А любое осреднение (по пространству или времени) есть погрешность, которая может стать очень значительной в случае уже упомянутой нами нелинейности свойств среды. Таким образом, в этом случае необходимо переходить на уровень описания реально существующих объектов: скоростей молекул (вернее, их статистических распределений), геометрических координат и времени. Кроме молекул и их скоростей на уровне описания газодинамического взаимодействия, ничего другого (ни давления, ни температуры) не существует.


Битва за скорость. Великая война авиамоторов


Современный испытательный стенд (НПО «Сатурн», г. Рыбинск). | Битва за скорость. Великая война авиамоторов | З-D-изображение двигателя в разрезе в виртуальной реальности.