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Notations 

f̂  

Fourier translation of function f : 

 ( ) ( ) 2ˆ i tf f t e dtπωω −= ∫
{

 

  

F  Fourier transform 
  

F  Inverse Fourier transform 
  

( )1L {  Space integrable function on {  
  

( )2L {  

Space of square integrable functions over {  or set of finite energy 
signals over {  
 ( )2

2 2
L

f f t dt= < +∞∫
{

 

  

( )  ,    Scalar product in space ( )2L { : ( ) ( ) ( ),f g f t g t dt= ∫
{

 

  

2Lf  Norm in space ( )2L {  
  

( )2l ¦  Space of square-summable sequences indexed by ¦  
  

( )0C {  Set of continuous functions over {  
  

( )nC {  Set of n  times continuously differentiable functions over {  
  

( )S {  
Set of rapidly decreasing indefinitely differentiable functions over 
{  

  

( )'S {  Dual space of ( )S { ; set of tempered distributions over {  
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k
nC  Binomial coefficients for 0 k n≤ ≤  

  

V  Closure of set V  (the smaller closed subspace containing V ) 
  

V W⊕  
Direct sum of spaces V  and W ; set of elements of the form 
v w+  with v V∈  and w W∈  

  

V W⊥  Spaces V  and W  are orthogonal 
  

z  Complex conjugate number of z ∈ }  
  

ε  White noise 
  

δ  Dirac distribution (at point 0) 
  

jV  Space of approximations at level j 
  

jW  Space of details at level j 
  

jA  or jA  Approximation at level j (reconstructed in 0V ) 
  

jD  or jD  Detail at level j (reconstructed in 0V ) 
  

ψ  

Wavelet associated with a multiresolution analysis (discrete 
analysis) or satisfying the admissibility condition (continuous 
analysis) 

  

,a bψ  

Wavelet family associated with ψ : 

 ( ) ( ),

1
,a b

t b
t a b

a a
ψ ψ +−

= ∈ ∈{ {  

  

( ),fC a b  Coefficient of function f  on wavelet function ,a bψ  
  

,j kψ  
( ) ( ) ( )

2 2
, 2 2 , for ,

j

j
j k x x k j kψ ψ

−
−= − ∈ ¦  

Dyadically dilated-translated versions of the wavelet 
  

ϕ  Scaling function associated with a multiresolution analysis 
  

,j kϕ  
( ) ( ) ( )

2 2
, 2 2 , for ,

j

j
j k x x k j kϕ ϕ

−
−= − ∈ ¦  

Dyadically dilated-translated versions of the scaling function 
  

LoD  Low-pass decomposition filter 
  

HiD  High-pass decomposition filter 
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LoR  Low-pass reconstruction filter 
  

HiR  High-pass reconstruction filter 
  

2↓   

or 

dec 

Down-sampling operator: [ ]( ) 2Y dec X X= = ↓  with 2n nY X=  

  

2↑  

or 

ins 

Up-sampling operator: [ ]( ) 2Y ins X X= = ↑  

avec 2 nnY X=  and 2 1 0nY + =  

  

∗  Convolution operator: Y X F= ∗  avec n n k k
k

Y X F−
∈

= ∑
¦

 

  

( )pδ  
Sequence defined by ( ) 0p

kδ =  if k p≠  and ( ) 1p
pδ =  for 

,p k ∈ ¦  
  

pT  
Translation operator for sequences 

( )pb T a=  is the sequence defined by k k pb a −=  for ,p k ∈ ¦  

 



 



Introduction 

Wavelets 

Wavelets are a recently developed signal processing tool enabling the analysis on 
several timescales of the local properties of complex signals that can present non-
stationary zones. They lead to a huge number of applications in various fields, such 
as, for example, geophysics, astrophysics, telecommunications, imagery and video 
coding. They are the foundation for new techniques of signal analysis and synthesis 
and find beautiful applications to general problems such as compression and 
denoising. 

The propagation of wavelets in the scientific community, academic as well as 
industrial, is surprising. First of all, it is linked to their capacity to constitute a tool 
adapted to a very broad spectrum of theoretical as well as practical questions. Let us 
try to make an analogy: the emergence of wavelets could become as important as 
that of Fourier analysis. A second element has to be noted: wavelets have benefited 
from an undoubtedly unprecedented trend in the history of applied mathematics. 
Indeed, very soon after the grounds of the mathematical theory had been laid in the 
middle of the 1980s [MEY 90], the fast algorithm and the connection with signal 
processing [MAL 89] appeared at the same time as Daubechies orthogonal wavelets 
[DAU 88]. This body of knowledge, diffused through the Internet and relayed by the 
dynamism of the research community enabled a fast development in numerous 
applied mathematics domains, but also in vast fields of application.  

Thus, in less than 20 years, wavelets have essentially been imposed as a fruitful 
mathematical theory and a tool for signal and image processing. They now therefore 
form part of the curriculum of many pure and applied mathematics courses, in 
universities as well as in engineering schools. 



xviii     Wavelets and their Applications 

By omitting the purely mathematical contributions and focusing on applications, 
we may identify three general problems for which wavelets have proven very 
powerful. 

The first problem is analysis, for scrutinizing data and sounding out the local 
signal regularity on a fine scale. Indeed, a wavelet is a function oscillating as a wave 
but quickly damped. Being well localized simultaneously in time and frequency it 
makes it possible to define a family of analyzing functions by translation in time and 
dilation in scale. Wavelets constitute a mathematical “zoom” making it possible to 
simultaneously describe the properties of a signal on several timescales.  

The second problem is denoising or estimation of functions. This means 
recovering the useful signal while we only observe a noisy version thereof. Since the 
denoising methods are based on representations by wavelets, they create very simple 
algorithms that, due to their adaptability, are often more powerful and easy to tune 
than the traditional methods of functional estimation. The principle consists of 
calculating the wavelet transform of observations, then astutely modifying the 
coefficients profiting from their local nature and, finally, inversing the 
transformation.  

The third problem is compression and, in particular, compression of images 
where wavelets constitute a very competitive method. Due to generally very sparse 
representations, they make it possible to reduce the volume of information to be 
coded. In order to illustrate this point, we can consider two leading applications 
whose impact has propagated well beyond the specialists in the field. The first 
application relates to the storage of millions of fingerprints by the FBI and the 
second is linked to the new standard of image compression JPEG 2000, which is 
based on wavelets. 

Wavelets provide particularly elegant solutions to a number of other problems. 
Let us quote, for example, the numerical solution of partial derivative equations or 
even, more to the point, the simulation of paths for fractional Brownian processes. 
Numerous types of software have appeared since the beginning of the 1990s and, 
particularly over the last few years, a complete list can be found on the website 
www.amara.com/current/wavesoft.html. 

Why this book? 

Our aim is to be somewhere in the space that separates the foundations and the 
computerized implementation. Operating with wavelets means understanding the 
origins of the tool and, at the same time, its application to signals. We attempt to 
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show the link between knowing and acting by introducing a very large number of 
images illustrating the text (perhaps 200, often simple ones). 

Who is this book for?  

Who are the ideal readers? This is always difficult to say. From the most 
theoretical point of view, a specialist in mathematical analysis is likely not to find 
his due here. Other very good texts already exist. As for the applications, the 
programming of algorithms is not included in this book; a lot of software is 
available. We position ourselves somewhere between these two extremes: 
theoretical mathematics and applied algorithms. 

This work, intended for a large audience of scientists, is directed towards 
learning and understanding wavelets through their applications. It can be useful by 
complementing the works strictly dedicated to mathematical approaches for students 
of engineering schools, those undertaking graduate and postgraduate research, as 
well as to engineers and researchers eager to have a compact yet broad view of 
wavelets in action. 

What can be found in this work? 

The organization of this work is reflected in the table below. The last column 
indicates the principal orientation of each chapter and shows the place occupied by 
the applications.  

 

Chapter Orientation 

1 Applications 

2 Theory  

3 Theory and algorithms 

4 Theory 

5 Theory and applications 

6 Applications 

7 Theory and applications 

8 Applications 

9 Applications 
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Let us summarize the contents of the book in a few sentences by grouping the 
naturally associated chapters. 

Chapter 1 proposes a quick overview of what could be called wavelets in action, 
of three key problems: analysis, denoising and compression. 

Chapters 2 and 3 provide the mathematical and algorithmic framework for 
wavelets transform. 

Chapters 4 and 5 concern wavelets families. The former proposes a genealogy of 
the well-known families, whereas the latter explains how to design a new wavelet. 

Chapters 6, 7 and 8 make it possible to “handle the tool” through broad 
application topics. Chapter 6 examines the analysis for 1D signals, while denoising 
and compression are covered in Chapter 7. For images, the three topics are covered 
in Chapter 8. 

Chapter 9 presents the analysis of real applications placed in their academic and 
industrial context, illustrating the variety of the fields concerned and the problems 
covered. 

The following table enables the identification of the logical dependence of 
chapters. 

 

Chapter Required reading 

1  

2  

3 2 

4 (2, 3) or 1 

5 2, 3 

6 2 or 1 

7 (2, 3) or 1 

8 (2, 3, 6) or 1 

9 1 or (2, 3, 6, 7, 8) 
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The examples and graphs presented throughout the book have been obtained due 
to the MATLAB© Wavelet Toolbox1, which is a software for signal or image 
processing by wavelets and packages of wavelets, developed by the authors [MIS 
00]. 

Is our presentation of the development of wavelets timely? Despite our best 
efforts, the rate of appearance of applications tests renders any static assessment null 
and void. Between 1975 and 1990 mathematical results have appeared in large 
numbers, but today they are much fewer. Applications have evolved following a 
complementary movement and the quantity of applied work has currently become 
very large. Moreover, we can imagine that a considerable number of industrial 
applications have not been made public. 

Bibliographical references 

Let us quote some references offering complete introductions to the domain of 
wavelets from the mathematical point of view as well as from the point of view of 
signal processing. 

Let us start first of all with books strictly dedicated to mathematical processing. 
The book by Daubechies [DAU 92] remains from this point of view, a reference 
text, along with those of Meyer [MEY 90] and of Kaiser [KAI 94]. These may be 
supplemented by two books [FRA 99] and [WAL 02], of greater accessibility and 
with a certain teaching potential. Still in the same spirit, but concentrating on more 
specific questions, we may consult [COH 92a] on bi-orthogonal wavelets and, for 
continuous analysis, we may refer to [TEO 98] and [TOR 95]. 

The book by Mallat [MAL 98] is, without a doubt, one of the most 
comprehensive that is currently available and constitutes an invaluable source, in 
particular for those looking for a presentation harmoniously uniting mathematics and 
signal. 

In the book by Strang and Nguyen [STR 96] an original vision deliberately 
directed towards signal processing is adopted. Moreover, it can also be referred to 
for concepts and definitions traditional in this field and not presented in this book. 

A compact presentation accessible to a large audience can be found in the book 
of scientific popularization [MEY 93]. Lastly, in the book by Burke Hubbard [BUR 
95] a very enthralling text on the history of the wavelets can be found.  

                                   
1 MATLAB© is a trade mark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA, 
01760-2098, USA, info@mathworks.com. 
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Naturally, more specialized references deserve to be mentioned: for example, 
[COI 92] and [WIC 94] for wavelet packets and [ARN 95], [ABR 97] for interesting 
applications of the continuous transform to turbulence or signals presenting 
properties of self-similarity. 

With respect to denoising and, more widely, the use of wavelets in statistics, 
some of the typical results in this field may be found in four very different books 
[HAR 98, OGD 97, PER 00, VID 99]. Moreover, we can also refer to [ANT 95] in 
order to grasp the extent of the stimulation exerted by the ideas propelled by 
wavelets in the statisticians’ community since a few years ago. This latter point can 
be usefully supplemented by two more recent articles: [ANT 97] and [ANT 01]. 

For compression and, in particular compression of images, we may refer to 
[DEV 92] for general ideas, to [BRI 95] for application to fingerprints and [USE 01] 
and [JPE 00] for the standard JPEG 2000. 

Let us mention, finally, that at the end of Chapter 9 a list of books exclusively 
devoted to the applications of wavelets can be found. 

This book has benefited from lessons on wavelets taught by the authors at the 
Ecole centrale de Lyon, at the Ecole nationale supérieure des techniques avancées 
(ENSTA), at the mathematical engineering DESS (equivalent to MSc) at the 
University of Paris XI, Orsay, at the Fudan University of Shanghai and at the 
University of Havana. 

The authors would like to express their particular gratitude to Liliane Bel, 
Nathalie Chèze, Bernard Kaplan and Bruno Portier for reading this work attentively 
and questioningly. Of course, the authors remain responsible for the remaining 
errors. 



Chapter 1 

A Guided Tour 

1.1. Introduction 

In this first chapter1, we propose an overview with a short introduction to 
wavelets. We will focus on several applications with priority given to aspects related 
to statistics or signal and image processing. Wavelets are thus observed in action 
without preliminary knowledge. The chapter is organized as follows: apart from the 
introduction to wavelets, each section centers on a figure around which a comment 
is articulated. 

First of all, the concept of wavelets and their capacity to describe the local 
behavior of signals at various time scales is presented. Discretizing time and scales, 
we then focus on orthonormal wavelet bases making it possible at the same time: 

– to supplement the analysis of irregularities with those of local approximations; 

– to organize wavelets by scale, from the finest to the coarsest; 

– to define fast algorithms of linear complexity. 

Next we treat concrete examples of real one-dimensional signals and then two-
dimensional (images) to illustrate the three following topics: 

– analysis or how to use the wavelet transform to scan the data and determine the 
pathways for a later stage of processing. Indeed, wavelets provide a framework for  
signal decomposition in the form of a sequence of signals known as approximation 
                                   
1 This chapter is a translated, slightly modified version of the [MIS 98] article published in 
the French scientific journal, Journal de la Société Française de Statistique, which the 
authors thank for their kind authorization. 
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signals with decreasing resolution supplemented by a sequence of additional touches 
called details. A study of an electrical signal illustrates this point; 

– denoising or estimation of functions. This involves reconstituting the signal as 
well as possible on the basis of the observations of a useful signal corrupted by 
noise. The methods based on wavelet representations yield very simple algorithms 
that are often more powerful and easy to work with than traditional methods of 
function estimation. They consist of decomposing the observed signal into wavelets 
and using thresholds to select the coefficients, from which a signal is synthesized. 
The ideas are introduced through a synthetic Doppler signal and are then applied to 
the electrical signal; 

– compression and, in particular, image compressions where wavelets constitute 
a very competitive method. The major reason for this effectiveness stems from the 
ability of wavelets to generally concentrate signal energy in few significantly non-
zero coefficients. Decomposition structure is then sparse and can be coded with very 
little information. These methods prove useful for signals (an example thereof is 
examined), as well as for images. The use of wavelets for images is introduced 
through a real image, which is then compressed. Lastly, a fingerprint is compressed 
using wavelet packets which generalize wavelets. 

The rapid flow of these topics focuses on main ideas and merely outlines the 
many theoretical and practical aspects tackled. These are detailed in other chapters 
of this book: Chapter 2 for the mathematical framework, Chapters 5, 6 and 8 for the 
analysis, and Chapters 7 and 8 for denoising and compression. 

1.2. Wavelets 

1.2.1. General aspects 

Let ψ  be a sufficiently regular and well localized function. This function 
1 2L Lψ ∈ ∩  will be called a wavelet if it verifies the following admissibility 

condition in the frequency domain: 

( ) ( )
2 2ˆ ˆ
d d

ψ ω ψ ω
ω ω

ω ω+ −= < +∞∫ ∫{ {  

where ψ̂  indicates the Fourier transform of ψ . This condition involves, in 
particular, that the wavelet integrates to zero. This basic requirement is often 
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reinforced by requiring that the wavelet has m vanishing moments, i.e. verify 

( ) 0kt t dtψ =∫{  for 0, ,k m= … . 

 
A sufficient admissibility condition that is much simpler to verify is, for a real 

wavelet ψ, provided by: 

ψ , 1 2L Lψ ∈ ∩ , 1t Lψ ∈  and ( ) 0t dtψ =∫R  

To consolidate the ideas let us say that during a certain time a wavelet oscillates 
like a wave and is then localized due to a damping. The oscillation of a wavelet is 
measured by the number of vanishing moments and its localization is evaluated by 
the interval where it takes values significantly different from zero. 

From this single function ψ  using translation and dilation we build a family of 
functions that form the basic atoms: 

( ) ( ),

1
,a b

t b
t a b

a a
ψ ψ +−

= ∈ ∈{ {
 

For a function f of finite energy we define its continuous wavelet transform by 
the function fC : 

( ) ( ) ( )
,,f a bC a b f t t dtψ= ∫{  

Calculating this function fC
 
amounts to analyzing f  with the wavelet ψ . The 

function f  is then described by its wavelet coefficients ( ),fC a b , where a +∈ R  
and b ∈ R . They measure the fluctuations of function f  at scale a . The trend at 
scale a  containing slower evolutions is essentially eliminated in ( ),fC a b . The 
analysis in wavelets makes a local analysis of f  possible, as well as the description 
of scale effects comparing the ( ),fC a b  for various values of a . Indeed, let us 
suppose that ψ is zero outside of [ ],M M− + , so ,a bψ  is zero outside the interval 
[ ],Ma b Ma b− + + . Consequently, the value of ( ),fC a b  depends on the values of 
f in a neighborhood of b  with a length proportional to a . 

In this respect let us note that the situation with wavelets differs from the Fourier 
analysis, since the value of the Fourier transform (̂ )f ω  of f  in a point ω  depends 
on the values of f  on the entire { . Qualitatively, large values of ( ),fC a b  provide 
information on the local irregularity of f around position b  and at scale a . In this 
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sense, wavelet analysis is an analysis of the fluctuations of f  at all scales. 
Additional information on quantifying the concept of localization and the 
comparison between the Fourier and wavelet analyses may be found in [MAL 98] or 
in [ABR 97]. 

The continuous transform (see, for example, [TOR 95] or [TEO 98]) defined 
above makes it possible to characterize the Holderian regularity of functions and its 
statistical use for the detection of transient phenomena or change-points fruitful (see 
Chapter 6). 

In many situations (and throughout this chapter) we limit ourselves to the 
following values of a  and b : 

2 = 2 ,  2  =  for ( , )j ja b k ka j k= ∈¦  

In this case and for wavelets verifying stronger properties than merely the 
admissibility condition – in particular, in the orthogonal case (specified below), 
which we shall consider from now on – a function called a scaling function and 
denoted ϕ  is associated with ψ . We dilate and translate it as ψ . On the whole, the 
ϕ  function is for local approximations what the ψ  function is for fluctuations 
around the local approximation, also called the local trend. 

We then define the basic atoms of wavelets which are also sometimes called 
wavelets: 

22
,

22
,

( ) 2 (2 ),     for    ( , )  

( ) 2 (2 ),     for    ( , )  

j
j

j k

j
j

j k

x x k j k

x x k j k

−
−

−
−

⎧
= − ∈⎪⎪

⎨
⎪ = − ∈⎪⎩

¦

¦

ψ ψ

ϕ ϕ

 

In this context, the wavelet coefficients of a signal s are provided by 

( ) ( )
, ,j k j k

s t t dtα ψ= ∫{  
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and, under certain conditions (verified for orthogonal wavelets), these coefficients 
are enough to reconstruct the signal by: 

( ) ( )
, ,j k j k

j k

s t tα ψ
∈ ∈

= ∑ ∑
¦ ¦  

The existence of a function ψ  such that the family { }
( ) 2, ,j k j k

ψ
∈¦

 is an 

orthonormal basis of ( )2L {  is closely related to the concept of multi-resolution 
analysis (MRA) (see [MEY 90], [MAL 89] and [MAL 98], and also Chapter 2). An 

MRA of the space ( )2L {  of finite energy signals is a sequence { }j j
V

∈¦
 of nested 

closed subspaces: 

02 1 1 2V V V V V− −⊂ ⊂ ⊂ ⊂ ⊂ ⊂A A
 

of ( )2L {  whose intersection is reduced to { }0  and the union is dense in ( )2L { . 
These spaces are all deduced from the “central” space 0V  by contraction (for 0j < ) 

or dilation (for 0j > ), i.e.: 

1( )   (2 )       for      j jf t V f t V j−∈ ⇔ ∈ ∈¦  

Lastly, there is a function ϕ  of 0V , which generates 0V  by integer translations, 

that is so that: 

( ) ( ) ( ) ( )2 2
0 , ( )k k

k

V f L f t e t k e lϕ
∈

⎧ ⎫⎪ ⎪⎪ ⎪= ∈ = − ∈⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑
¦

{ ¦
 

where the ϕ  function is the scaling function introduced above. 
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Subspaces { }j j
V

∈¦  
of MRA are used as approximation (or trend) spaces. In 

addition, we also define detail spaces noted as { }j j
W

∈¦
. For fixed j ∈ Z , the jW  

space is the orthogonal complement of jV  in 1jV − : 

1       for        j j jV V W j− = ⊕ ∈ ¦  

An element of the approximation space of level 1j −  is decomposed into an 
approximation at level j , which is less accurate, and a detail at level j .  

The integer translates of ϕ { },j k k
ϕ

∈¦  
generate jV

 
while those of 

ψ { },j k k
ψ

∈¦
 generate jW . Since ( )2

j
j

L W
∈

= ⊕
¦

{ , any signal is the sum of all 

its details and { }
( ) 2, ,j k j k

ψ
∈¦

 form an orthonormal wavelet basis of ( )2L { . Thus, 

,j kα  is the coefficient associated with ,j kψ  in the orthogonal projection of s  onto 

jW . 

The respective roles of the ϕ  and ψ functions, as well as the concepts of detail 
and approximation, will be illustrated below using examples. Let us now examine an 
“orthogonal” wavelet. 

1.2.2. A wavelet 

Figure 1.1 relates to the wavelet noted db4 after I. Daubechies. 
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Figure 1.1. The wavelet noted db4 after I. Daubechies 

At the top, from left to right, we find the scaling function and then the wavelet. 
As can be seen, the wavelet ψ  oscillates and integrates to zero, while the scaling 
function ϕ  oscillates less and has a positive integral (in fact, equal to 1). 
Consequently, calculating the scalar product of a function or a signal with a wavelet 
makes it possible to analyze the fluctuations of the signal around a local average 
provided by the calculation of the scalar product of the signal and the scaling 
function. 

Below we provide the four filters used to carry out the calculation of coefficients 
by a fast algorithm due to S. Mallat (see Chapter 3). These filters go by pairs. Two 
are associated with the scaling function ϕ  and they appear in the first column, while 
the two other filters, in the second column, are associated with the wavelet ψ . 
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In a column we pass from one filter to another taking the mirror filter, and in a 
row we pass from one filter to another taking the mirror filter and multiplying the 
even-indexed terms by –1. Thus, just one of these four filters is enough to produce 
all the others. Similarly, we can show that on the basis of a given MRA and, thus, of 
the scaling function, we can construct the wavelet.  

The filters appear in the relations concerning the basic functions associated with 
successive levels. These are the equations on two following scales: 

1,0 ,j k j k
k

hϕ ϕ+
∈

= ∑
¦   

and  1,0 ,j k j k
k

gψ ϕ+
∈

= ∑
¦  

The sequence h determines the filters of the first column and the sequence g 
determines those of the second column. 

The wavelet presented in Figure 1.1 forms part of a family of dbn wavelets 
indexed by n ∗∈ ’  introduced by I. Daubechies in 1990 (see Chapter 4 for the 
construction). The wavelet db1 is simply the Haar wavelet. 

The main properties of the dbn wavelet are as follows: 

− it is an orthogonal wavelet, associated with an MRA; 

− it has compact support [0, 2n  – 1] and the associated filters are of length 2n ; 

− the number of vanishing moments is n  and, in general, it is far from 
symmetric; 

− the regularity is 0, 2n when n is sufficiently large. 

1.2.3. Organization of wavelets 

 Wavelets are thus organized using two parameters: 

− time k  making it possible to translate the forms for a given level; 

− scale 2j
 making it possible to pass from a level j  to the immediately lower 

level in the underlying tree represented in Figure 1.2. 

In the first column of the figure we find the dyadic dilates (2 times, 4 times, 8 
times, etc.) of the scaling function ϕ  and in the second column, those of the wavelet 
ψ . 
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Figure 1.2. Organization of wavelets 

The functions in the first column are used for calculating the coefficients of 

approximation ( ) ( )
, ,j k j ks t t dtβ ϕ= ∫{ , which define local averages of the signal 

( )s t . The signal ( ) ( )
, ,j j k j k

k

A t tβ ϕ
∈

= ∑
¦

 is an approximation. 

The functions in the second column are associated with the calculation of 

wavelet coefficients ( ) ( )
, ,j k j ks t t dtα ψ= ∫{ , which relate to the differences 

between two successive local averages. These are the final touches (we shall call 
them details) of the form: 

( ) ( )
, ,j j k j k

k

D t tα ψ
∈

= ∑
¦

 

We therefore have four kinds of objects: 

− detail coefficients ( ) ( )
, ,j k j ks t t dtα ψ= ∫{ , which are also wavelet 

coefficients enabling us to define the details; 

− detail signals themselves: ( ) ( )
, ,j j k j k

k

D t tα ψ
∈

= ∑
¦

; 
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− approximation coefficients: ( ) ( )
, ,j k j ks t t dtβ ϕ= ∫{  making it possible to 

calculate the approximations; 

− approximation signals themselves: ( ) ( )
, ,j j k j k

k

A t tβ ϕ
∈

= ∑
¦

. 

Detail and approximation signals are related to t , the time of the original signal, 
whereas the coefficients (the ,j kα  and the ,j kβ ) of the level j  are in dyadic time 

2j¦ . The details and approximations are interpreted in terms of the orthogonal 
projection onto spaces jW  and jV , respectively. For a signal s , if we compare the 

values of the signal to the coefficients { }0,k k
β

∈¦
 in 0V , the { },j k k

α
∈¦

 and 

{ },j k k
β

∈¦
 are the coefficients of s  with respect to the bases of jW

 
and jV  

respectively; while jD  and jA  are elements of spaces
 jW  and jV , considered as 

functions of 0V . 

1.2.4. The wavelet tree for a signal 

Such a tree is presented in Figure 1.3. At its root we find a signal s  (we may 
also say a time series). The tree can be read in various ways. The first column yields 
three approximations, from the finest 1A  to the coarsest 3A , as may be realized 

focusing on the end of the signal. The differences between two successive 
approximations are captured in the details denoted 1D  to 3D . More precisely, we 

have 1 1D s A= − , 2 1 2D A A= −  and, thus, 2 2 1s A D D= + + . 

Let us return to the case of a signals , which is in continuous time. Starting from 
the equality , ,j k j k

j k

s α ψ
∈ ∈

= ∑ ∑
¦ ¦

, meaning that we can reconstruct the signal on 

from its coefficients ,j kα , we may use it to define the detail at level j  differently. 

Let us fix j  and sum up using k . Again we find the detail jD : 

, ,j j k j k
k

D α ψ
∈

= ∑
¦
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Figure 1.3. The wavelet tree for a signal 

Let us then sum up using j . We rediscover that the signal is the sum of its 
details: 

j
j

s D
∈

= ∑
¦  

The details are defined. Let us now take a reference level marked J ( 3J =  in 
this example). There are two kinds of details: those associated with the indices 
j J≤  corresponding to the scales 2 2j Ja = ≤ , which are finer details than the 
resolution corresponding to J ; and those for which j J> , are coarser. Let us 
aggregate the latter: 

jJ
j J

A D
>

= ∑
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This sum defines what will be referred to as the approximation at level J of the 
signals . Moreover: 

jJ
j J

s A D
≤

= + ∑
 

 This relation means thats is the sum of its approximation JA and of the finer 
details. It can be deduced from it that the approximations are linked by: 

1J J JA A D− = +  

In the orthogonal case, the family { }, ,j k j k
ψ

∈¦
 is orthogonal and we have: 

− JA  is orthogonal to 1 2, , ,J J JD D D− − A ; 

− s  is the sum of two orthogonal signals: JA and j
j J

D
≤
∑ ; 

− the quality JQ  of the approximation of s by JA  is equal to 
2

2
J

J

A
Q

s
=  and 

we have 
2

1 2
J

J J

D
Q Q

s
− = + . 

1.3. An electrical consumption signal analyzed by wavelets 

As a first example we consider a minute per minute record of the electrical 
consumption of France; the problem is presented in detail in [MIS 94]. 

In Figure 1.4 we find, from top to bottom, the original signal (s), the 
approximation at level 5 (a5) and the details from the coarsest level (d5) to the finest 
level (d1). All the signals are expressed in the same of time unit, which allows a 
synchronous reading of all the graphs. The wavelet used is db3. 

The analyzed signal represents to the nearest transformation three days of 
electrical consumption during summer in France. The three days are Thursday 
followed by Friday, having very similar shape and amplitude, then Saturday, which 
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has a much lower average level due to the start of the weekend and ebbing economic 
activity. We may thus reinterpret the time scales corresponding to each level. 

Ignoring the effects of wavelet choice, we can roughly state that d1 contains the 
components of the signal of period between 1 and 2 minutes, d2 those of period 
between 2 and 4 minutes and so on until d5 which contains the components of the 
signal of period between 16 and 32 minutes. The a5 approximation contains signal 
components of period greater than 32 minutes. 

A quick examination shows that: 

− the analysis makes it possible to track possible outliers, which are detected 
thanks to the very large values of d1 around the position 1,200; 

− in the graphs we can distinguish the details d1 and d2 (measurement and state 
noises whose amplitude is low in normal circumstances) which yield details 
oscillating quickly around 0; 

− on the contrary we isolate the period of sensor failure corresponding to the 
long sequence of abnormally large values of d1, d2 and, more slightly, d3, between 
the position 2,500 and the position 3,500. We have here an additional noise; 

− moreover, we notice that in the details d4 and d5 we no longer distinguish this 
period, and the difference due to an exceptional sensors noise disappears giving an 
indication of the frequency contents of the additional noise; 

− the daily pseudo-periodicity evident in the analyzed trajectory (s) can be read, 
for the scales examined, from levels 4 and 5 through the appearance of periodic 
patterns in the details at equally spaced positions. From that we deduce that the 
details d4 and d5 contain components of the useful signal as opposed to the non-
informative noise. This phenomenon does not occur for the finer levels and we could 
believe that the details consist almost entirely of noise. 



14     Wavelets and their Applications 

 

Figure 1.4. An electrical consumption signal analyzed by wavelets 

This quick example illustrates that a simple analysis by wavelets can yield many 
pathways for finer processing and direct the strategy of solving classical problems, 
such as outlier detection, denoising reduction or signal extraction. 

1.4. Denoising by wavelets: before and afterwards 

Denoising is the major application of wavelets in statistics. This problem admits 
a very elegant solution. 

In Figure 1.5 (top) we see a portion of the real noisy signal analyzed in Figure 
1.4. 
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Figure 1.5. Denoising by wavelets: before and after 

The denoised signal using wavelets is located in the lower part. It is obviously 
well denoised, in the zones where the signal is smooth (around positions 200 or 800, 
for example), as well as in the zone around instant 400 where the signal is irregular. 
The traditional methods of denoising are not capable of such an adaptation in time. 
These methods estimate the function f  using the model: 

( ) , , 1, ,i i i i

i
Y f t t i n

n
ε= + = = A  

where f  is unknown, ( )i i
Y  are observed and ε  is an unobservable white noise. 
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1.5. A Doppler signal analyzed by wavelets 

Let us first consider a simulated signal enabling us to clearly understand the 
spirit of the technique of denoising by wavelets (see Figure 1.6). 

The screen is organized in two columns: in the first one we see the noisy signal s, 
then, in the lower part, we see the approximations from level 5 (the coarsest, a5) to 
level 1 (the finest, a1); in the second column at the top we see a colored version of 
the wavelet coefficients of levels 5 to 1 (cfs), followed by the noisy signal s and 
then, in the lower part, the details from level 5 (the coarsest, d5) to level 1 (the finest, 
d1). 

The wavelet used, sym4, is a compactly supported almost symmetric wavelet of 
order 4 (see Chapter 4). 

 

Figure 1.6. Doppler signal analysis by wavelets 
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Let us start by examining the first column and concentrate on the portion of the 
signal corresponding to the x-coordinates from 200 to 1,000. Starting from a1 let us 
seek, ascending, a level such that the approximation constitutes a good candidate to 
be an estimator of the useful signal. Levels 4 and 5 are reasonable. Nevertheless, the 
estimator associated with a4 is clearly very bad for the beginning of the signal 
corresponding to the x-coordinates 0 to 100. Conversely, an acceptable restitution at 
the beginning of the signal would result in choosing a2, which is visibly too noisy. 

Let us now look at the details. Detail d1 seems to consist entirely of noise while 
details d2 to d5 present large values concentrated at the x-coordinates from 0 to 300. 
This is also visible on the graph of the wavelet coefficients (cfs), the largest in 
absolute value being the clearest. This form stems from the fact that the signal is a 
sinusoidal function with amplitude and period growing with time. The oscillations at 
the smallest scales explain the displayed details; the others are in the a5 

approximation. 

Thus, a plausible denoising strategy consists of: 

− keeping an approximation such that the noise is absent or at least very 
attenuated (a4 or a5); 

− supplementing this approximation by parts of the finer details clearly 
ascribable to the useful signal and rejecting the parts which are regarded as 
stemming from the noise. 

This is precisely what the denoising by wavelets methods achieve, but in an 
automatic fashion. The ad hoc choice suggested for this particular simulated signal 
is that carried out by one of the most widespread methods of denoising by wavelets 
according to Donoho and Johnstone (see [DON 94], [DON 95a], [DON 95b]). 

1.6. A Doppler signal denoised by wavelets  

Let us consider Figure 1.7. The screen is organized in two columns. In the first 
we see wavelet coefficients from level 5 to level 1. To make them more readable, 
they are “repeated” 2k

 times at level k  (which explains the sequences of a constant 
gray level especially visible for 3k > ).  

 
In each one of these graphs we note the presence of two horizontal dotted lines: 

the coefficients inside the tube are zeroed by the process of denoising. In the second 
column at the top the noisy signal s  is superimposed over the denoised signal. In 
the middle we find a color version of the wavelet coefficients from level 1 to 5 of 
the original noisy signal and in the graph at the bottom the counterpart for the 
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thresholded wavelet coefficients, from which the denoised signal is reconstructed. 
The sym4 wavelet is used as previously. 

 

Figure 1.7. Doppler signal denoised by wavelets 

Let us use this example to see how denoising is performed: 

− all the approximation coefficients are kept, which from the onset leads to 
introducing the first component of the denoised signal which has the following form 
( ˆ

dA  is not represented directly in Figure 1.7; it corresponds to the a5 approximation 
in Figure 1.6): 

5, 5,
ˆ ˆ
d k k

k

A β ϕ= ∑  
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The estimated coefficients 5,
ˆ

kβ
 

are simply the coefficients obtained by 
decomposition of the initial signal; 

− only the few larger wavelet coefficients (i.e. detail coefficients) are preserved; 
the others are replaced by zero. In the second column we may see the coefficients 
before and after this thresholding operation to note the sparsity of the preserved 
coefficients (the black zone of the graph at the bottom corresponds to the cancelled 
coefficients). We thus obtain the second component of the denoised signal which 
has the form: 

, ,
1 5

ˆ ˆ
d j k j k

j k

D α ψ
≤ ≤

= ∑ ∑  

The estimated coefficients ,ˆ
j kα are simply the ,j kα

 
coefficients obtained by 

decomposition of the initial signal and then thresholded. Many automatic methods 
are available for the choice of thresholds, depending on the form and the hypotheses 
concerning the model supposed to suitably represent the way of generating the data. 
We do not detail them here; 

− the denoised signal is thus: 

ˆ ˆ
d̂ d ds A D= +  

It is visible that the result obtained at the top on the right has a good quality, 
except at the very beginning of the signal which oscillates too much on a small scale 
with fluctuations that are small compared to those of the noise. 

1.7. An electrical signal denoised by wavelets  

Let us return to the problem of denoising a real signal, which is more difficult 
since the nature of the noise is unknown. The method employed here takes the 
previous situation as a starting point by adapting the thresholding to the level. 

The screen presented in Figure 1.8 is organized in two columns as in Figure 1.7. 
The wavelet used is coif5. Examining the first column we see that the coefficients of 
levels 1 to 3 have all been considered by this method as ascribable to the noise and 
that they have all been zeroed. This conforms to the conclusions of the analysis of 
the three day electrical load plot carried out before. On the other hand, for levels 4 
and 5, the process mainly selects wavelet coefficients in the zone around the position 
375, thus enabling an excellent restitution of the abrupt signal changes. 
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The key arguments to understand the effectiveness of these methods are as 
follows: 

− the decomposition by wavelets is an additive analysis, consequently, the 
analysis of ( )

t tY f t ε= +  is equal to the sum of the analyses of the signal ( )f t  
and the noise tε ; 

− if we suppose that the noise ε  is white with a constant variance, the wavelet 
coefficients on all scales are white noise with the same variance. In addition, real 
signals are in many cases regular enough except in rare locations (start and end of 
transitory phenomena, ruptures for example), which renders the decomposition by 
wavelets of ( )f t  very sparse and very well represented by the coefficients of a 
rather rough approximation and some large detail coefficients; 

− if the irregularities generate coefficients larger than the scale of the noise, the 
process of thresholding only selects coefficients related to the signal provided that 
the scale of the noise can be suitably estimated. Lastly, the operation of thresholding 
always leads to regularize the signal. 

 

Figure 1.8. Electrical consumption signal denoising by wavelets 
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1.8. An image decomposed by wavelets 

1.8.1. Decomposition in tree form 

Let us now pass to image processing by wavelets and examine first Figure 1.9. 
At the top left we find the original image, in the lower part a table of images with 
three rows and four columns. The whole figure constitutes the tree of decomposition 
by wavelets; in 2D it is a quaternary tree while in 1D it is a binary tree. 

In 1D the signal is decomposed into two: an approximation and a detail; in 2D 
the image is decomposed into four: an approximation (first column of the 3 × 4 
table) and three details in three directions, horizontal, diagonal and vertical (three 
last columns of the 3 × 4 table). The rows of this table are indexed by levels: level 1 
(the finest, noted L1) to level 3 (the coarsest, noted L3). The wavelet used here is 
sym4. 

 

Figure 1.9. An image (“Barbara”) decomposed by wavelets. 

Decomposition in tree form 
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Before commenting further on this screen, let us say a few words about 
orthogonal wavelets in 2D. These are very particular cases of wavelets, by far the 
most used because they lead to fast calculations, which is critical in image 
processing. In 1D we have two functions: ϕ  and ψ , and the two associated filters. 
On this basis we produce the scaling function and the wavelets which no longer 
operate on the real line, but on the plane: 

− ( , ) ( ) ( )x y x yϕ ϕ ϕ=  used to define approximations; 

− 1( , ) ( ) ( )x y x yψ ψ ϕ= used to define horizontal details; 

− 2( , ) ( ) ( )x y x yψ ψ ψ= used to define diagonal details; 

− 3( , ) ( ) ( )x y x yψ ϕ ψ=  used to define vertical details. 

Algorithmic simplicity comes from the fact that it is possible to successively 
apply to the rows and columns of the matrix associated with the image the two 
filters (lowpass and highpass, respectively) useful in 1D. 

Carefully examining the three approximations (in fact, their coefficients) we note 
that they are increasingly coarser versions of the original image. 

By comparing the original image with the level 3 approximation coefficients it 
becomes clear that details are lost on a small scale, such as, for example, the shawl 
design or the weft of the cane armchair behind the face. The coefficients of detail are 
in general more difficult to exploit. Nevertheless, we distinguish large coefficients in 
the zones mentioned above, especially at level 2. We also see face features coming 
out in the horizontal detail of level 2. 

1.8.2. Decomposition in compact form 

The preceding representation of decomposition (see Figure 1.9) focuses on the 
tree structure; the one proposed in Figure 1.10 uses 2D decomposition coding. 

Indeed, we find four sub-figures in this figure. The original image is top left. Let 
us comment on the sub-figure at the bottom right consisting of the original image 
decomposition coefficients. 

To read this graph, we initially consider that the image is divided into quadrants. 
The quadrants at the bottom left, bottom right and top right are not decomposed. The 
three small images found represent (in the counterclockwise direction) the 
coefficients of vertical, diagonal and horizontal details at the finest level (level 1), 
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while the three following small images, located in the top left quadrant, represent the 
detail coefficients at level 2, and so on until we find a single small image (this is the 
case for the top left), which contains the approximation coefficients at the coarsest 
level (here 2). 

The two other images, bottom left and top right, represent respectively, the image 
resulting from a compression process (see Figure 1.11) and the image reconstructed 
from only level 2 approximation coefficients. The wavelet used is still sym4. 

The image analyzed here is a zoom of the one in Figure 1.9 and from this point 
of view enables finer comments. Let us concentrate on the images reproduced on the 
anti-diagonal of the screen. They have the same resolution as the original image and 
therefore can be compared directly. 

 

Figure 1.10. An image (“Barbara”) decomposed by wavelets. Decomposition in compact form 

Let us examine the top right image comparing it with the original image. We find 
the elements mentioned in the commentary on the preceding figure. The shawl 
design was lost in the level 2 approximation, only being discernible at scales lower 
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than 4 pixels. Here we recover only a rather homogenous texture with the two well 
restored principal folds and slightly less well-defined intermediate fold. The same 
holds for the armchair which is difficult to recognize. Moreover, the features of the 
face are fuzzier. 

This general loss of contours definition can be largely improved by selectively 
adding coefficients of suitably selected details. After such an operation we obtain 
the compressed image located bottom left. It is not perfect but, nevertheless, much 
more accurate. Here is how it was obtained. 

1.9. An image compressed by wavelets 

At the top left of Figure 1.11 we find the original image, which needs to be 
compressed and at the top right we have the compressed image. 

Below, for each level from the finest (level 1, denoted by L1) to the coarsest 
(here level 3, denoted by L3) we find (for each orientation: horizontal, diagonal and 
vertical) the grayscale histogram of the corresponding detail coefficients. In each 
one of these histograms we note the presence of two vertical dotted lines: the 
coefficients inside the vertical tube are zeroed by the process of compression. 

The percentage of zeros in the representation by wavelets is more than 95%. It is 
an indicator of the space freed up by compression. This is a compression method 
with loss: approximately 98% of energy is preserved. 

The criterion of energy is neither a very meaningful nor relevant indicator for the 
images. To evaluate the quality of restitution many numerical criteria exist but 
nothing is more critical than the human eye. 

The method of compression is similar to that used in denoising; it is the criterion 
which changes. We preserve the coefficients of the roughest approximation, with 
which we associate the largest detail coefficients, then we reconstruct. The tuning 
shown in the screen presented in Figure 1.11 is manual and carried out by level and 
direction. 

Let us examine the grayscale histograms of the detail coefficients: 

− at the bottom there appear those concerning level 1. For each of the three 
directions all the coefficients are replaced by zero since the histogram is contained in 
the zone delimited by the two vertical dotted lines; 

− for level 2 the strategy is a little less selective and preserves the majority of the 
coefficients with large absolute values; 
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− finally, for level 3 which is critical for image contours restitution, only the very 
small coefficients are eliminated, the vertical features being very close, approaching 
zero. 

The image reconstructed by using thresholded coefficients has very good quality, 
despite the high percentage of coefficients replaced by zero. 

These results may be improved considerably using suitably selected biorthogonal 
wavelets (a decomposition wavelet with a sufficient number of vanishing moments 
so that the representation by wavelets is the most sparse possible, associated with a 
dual wavelet with very regular and symmetric reconstruction in order to remove as 
many visual artifacts as possible). Later on we shall see an illustration thereof. 

 

Figure 1.11. An image (“Barbara”) compressed by wavelets 

1.10. A signal compressed by wavelets 

Before passing to fingerprints compression let us mention the methods of 
compression by wavelets of one-dimensional signals, using an artificial example. 
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The screen presented in Figure 1.12 is organized in two columns. In the first one 
we find a single graph making it possible to adjust a global threshold for the detail 
coefficients of the signal to be compressed (those of the approximation being 
preserved). All the detail coefficients whose absolute value is lower than the 
threshold (determined by the x-coordinate of the vertical dotted line) are zeroed by 
the compression. The possible values of the threshold are given by the x-axis. Two 
curves are drawn: one increasing which gives the percentage of zeros in the 
representation of the compressed signal, the other decreasing which gives the 
percentage of the energy preserved by the compressed signal. 

 

Figure 1.12. A signal compressed by wavelets 

In the second column, the original signal is superimposed on the compressed 
signal. In the lower part we find a color version of the wavelet coefficients of levels 
1 to 5 of the original signal and in the graph underneath is the counterpart for the 
thresholded wavelets coefficients, from which the compressed signal is 
reconstructed. 
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The percentage of zeros in the representation by wavelets is 95% (5% of the 
coefficients are preserved), for 92% of energy preserved: this stems from the fact 
that the signal is noisy and that therefore the very fast fluctuations are lost. The 
graphs (bottom right) of the coefficients before and after thresholding make it 
possible to notice the sparsity of the preserved coefficients. The wavelet used is 
sym4. 

The compression of one-dimensional signals, although less crucial than image 
compression, has many applications that sometimes present a great economic 
interest. This is the case, for example, for companies forced to preserve the 
individual consumption profiles of their customers over long periods with a high 
degree of accuracy. 

As the form of the proposed graphical interface suggests, to carry out 
compression by global thresholding the ideas are very close to those of denoising 
and the implemented algorithm is identical. It operates in three steps whose general 
schematic is as follows: 

− decomposition by wavelets; 

− we preserve the coefficients of the coarsest approximation as well as the 
largest wavelet coefficients in absolute value; the others are replaced by zero; 

− from these modified coefficients we reconstruct the compressed signal. 

1.11. A fingerprint compressed using wavelet packets 

In Figure 1.13 (top right) we find the original image and (bottom left) the 
compressed image. 

At the top left we find the wavelet packets tree and at the bottom right, the 
decomposition of the image to be compressed. This decomposition is obtained by 
decomposing into four (approximation and three details) not only the 
approximations but also the details. The Haar wavelet is used; the result is good but 
can be improved using a biorthogonal wavelet. 

In Figure 1.14, at the top left we find the original image and at the top right is the 
compressed image. The method of compression involves a global thresholding of the 
wavelet packets coefficients of the image to compress. The graph underneath the 
original image visualizes the choice of the global threshold exactly as in 1D case. 
The wavelet used is a biorthogonal one.  

The result is very good for a percentage of zeros of the compressed image 
representation equal to 95%. 
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Figure 1.13. A fingerprint analyzed and compressed by Haar wavelet packets 

 

Figure 1.14. A fingerprint compressed by biorthogonal wavelet packets 



Chapter 2 

Mathematical Framework 

2.1. Introduction 

Several points of view are needed to realize the interest of wavelets as a 
mathematical tool of function analysis and representation. Two methods are 
proposed in this chapter. 

The first method centers on the idea of building a tool for local analysis in time. 
We introduce the continuous wavelet transform by showing how it solves the 
problems that are from this point of view raised by the Fourier transform and the 
sliding window Fourier transform, also called Gabor transform. In fact, the first is a 
global transformation and second is local, but with fixed temporal resolution. On the 
other hand, the wavelet transform is not just a local analysis; its temporal resolution 
is variable. We underline its capacity to describe the local behavior of signals on 
various timescales. 

The second method is the inversion of analysis and the search for economic 
representations. These are integral transforms: they are obtained by integrating the 
signal multiplied by the basic analyzing functions. As for any transformation, the 
question of reconstruction (or inversion) arises: if ( )g T f=  is the transform of f , 
is it possible “to recover”, to reconstruct f  knowing g ? In the three cases studied 
the answer is: yes, under appropriate conditions. In the “very good cases”, it is even 
possible to reconstitute f from discrete values of the transform. This has major 
advantages from a numerical point of view. Thus, the discrete wavelet transform is 
introduced. Seeking “to minimize” the number of discrete information necessary to 
reconstruct f  we are naturally led to the concept of wavelets base. We then 
introduce the orthonormal wavelet bases starting from the concept of multi-
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resolution analysis of the space of the finite energy signals. This provides a 
framework for the decomposition of a signal in the form of a succession of 
approximations with decreasing resolution, supplemented by a sequence of details. 

We then present the bases of wavelet packets, which constitute a generalization 
of the orthonormal wavelet bases making it possible, at the same time, to improve 
the frequency resolution of the analysis in wavelets and to propose a richer analysis 
associated with a large collection of decompositions. It is then possible to select the 
decomposition best adapted to a given signal, with respect to an entropy criterion. 

Lastly, we introduce the biorthogonal wavelet bases whose idea is to slacken the 
strong constraints that an orthonormal wavelet basis must verify. The key is to 
consider two wavelets instead of just one. The duality links between the analyzed 
and synthesized wavelets are loose enough to partially uncouple the properties of 
each of the two bases depending on the objectives. 

This chapter outlines a theoretical framework without providing the proofs and 
the results are not always expressed in a “tight” mathematical language. Let us then 
finish this introduction with some bibliographical indications. The issues discussed 
in this chapter are traditional and are thus found in all the works offering broad 
presentations of the wavelets, in particular in [DAU 92], [MAL 98] and [KAH 98]. 
On the continuous analysis in wavelets it is moreover possible to refer to [LEM 90], 
[TEO 98] and [TOR 95]; on the orthonormal bases to [FRA 99], [WAL 02] and 
[STR 89], on wavelet packets to [COI 92] and [WIC 94], and on biorthogonal bases 
to [COH 92b] and [COH 92c]. 

In the next sections we will note time as t ∈ R  and frequency as ω ∈ { . The 

space of square integrable functions (called signals) is noted ( )2L {  or simply 2L . 

The square norm ( )
2

s t dt∫  
is called energy of the signal s . The quantifiers are 

frequently omitted. 

2.2. From the Fourier transform to the Gabor transform 

2.2.1. Continuous Fourier transform 

The Fourier transform is noted F  and the inverse transform F . The formulae of 
analysis and synthesis of the Fourier transform for an integrable function are given by: 

Analysis: ( ) ( )( ) ( ) 2ˆ i tf f f t e dtπωω ω −= = ∫
{

F ,         ω ∈ {  
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Synthesis: ( ) 2ˆ ˆ( ) ( ) ( ) i tf t f t f e dπωω ω+= = ∫
{

F ,         t ∈ {  

NOTE 2.1.– the synthesis formula is formal, without additional assumptions about 
the function f . The Fourier transform extends to finite energy functions and 
convergence in the synthesis formula is in 2L . 

Ů 

In signal processing (̂ )f ω  is often called the spectrum of f , (̂ )f ω
 
is the energy 

spectrum and ˆ( ( ))Arg f ω  is the phase. 

For signals (or functions) with finite energy the transformation F  has the 
following properties: it is linear, continuous, admits a linear and continuous inverse 

transform F , and preserves the angles and energies (scalar products and norms). 
This is stated formally as follows: 

THEOREM 2.1. 

The Fourier transform F  is a bijective continuous linear application of 2L  on 

2L . The inverse bijection is F  and we thus have:  

f f f= =FF FF  

In addition, the scalar product and thus the norm are preserved: 

( ) ( ) ( )2 2 2
, , ,L L L

f g f g f g= =F F F F    and   2 2 2L L L
f f f= =F F  

Ů 

 The atoms of this transform are functions of t : 2i te πω− . 

While examining the analysis formula, some of the disadvantages of the Fourier 
transform appear. 
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Disadvantage 1. Removal of the time aspects 

The temporal aspects of the function f  disappear in f̂ . Indeed, if f  is not 

continuous, it is almost impossible to detect it by using f̂  as presented by the 
elementary example (see Figure 2.1). Let f  be a square pulse signal equal to 1 in 
[ ],a a−  and 0 elsewhere, noted [ ] ,,1I 0a af a−= > . Its Fourier transform is 

(̂ ) sin(2 )f aω π ω πω= . 

 

Figure 2.1. Fourier transform of  [ ],1I a a−
 
for a = 1 

If we know that the studied function is a square function, we can find the 
parameter a by seeking the distance between two successive zeroes of the Fourier 
transform. This becomes too complicated for a more composite signal, even for a 
simple linear combination of pulse functions, [ ] [ ], ,1I 1Ia a b bf α β+− −=  with 

0b a> >  (see Figure 2.2 for 1a = 2b = , 0.9α =  and 0.1β = ). We cannot 

find a  and b  from f̂ , except in a rather complicated way. In addition, the two 

Fourier transforms presented in Figures 2.1 and 2.2 are very similar, although the 
second function has two discontinuities more (in b± ) than the pulse function. 
Merely looking at the Fourier transform does not make it possible to deter the 
position and the number of discontinuities. 

This example shows that we cannot locate the discontinuities, the changes of 

regularity of a function f  in view of f̂ . The integration over {  makes a kind of 
averaging which masks the discontinuities. 
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Figure 2.2. The Fourier transform of f  for a = 1 and b = 2 

Disadvantage 2. Non-causality of the Fourier transform 

The calculation of f̂ requires the knowledge of f over { . A “progressive” 

calculation of the transform and, thus, a real-time analysis is impossible. Indeed, we 

cannot even approximately know the spectrum f̂  of a signal f  whose future we 

don’t know. Figure 2.3 illustrates this point and presents the functions f , f̂ , g  and 

ĝ , with [ ],1I a af −=  and [ ] ] ],0 0,1I 1Ia ag −= −  for a = 1. It is clear that, although 

f and g coincide on −{ , their transforms are very different. 

 

 

Figure 2.3. Functions f , f̂  (noted fF
 
on the graph), g  and ĝ

 
for a = 1 
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Disadvantage 3. Heisenberg uncertainty principle 

If the support of f is “small”, then the support of f̂ is “large” and vice versa. For 
example, Figure 2.4 presents f and f̂ when [ ],1I a af −=  for two values of a: at the 
top the support of f is “small” and that of f̂ is “large”. 

Two limit cases are enlightening: if f  is concentrated in point 0, its transform 
f̂ is equal to 1 everywhere. Conversely, if f is a signal that is not localized in time, 
equal to 1 everywhere, f̂  is concentrated in 0. Using the framework of temporal 
distributions this is expressed by: 1δ =F  and 1 δ=F , where δ  is a Dirac 
function. 

 

   

Figure 2.4. Functions f and f̂  for a = 1/8 and a = 8 

The localizations of f  and of f̂  are linked by the Heisenberg uncertainty 
principle that specifies an inequality concerning the dispersions of f  and f̂ . It 
constrains the product of dispersions in time ( fσ ) and frequency (

f̂
σ ) by: 

2 2
ˆ

1

4f f
σ σ ≥  
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where these variances are defined by: 

( ) ( )2 22
2

1
f t u f t dt

f
σ = −∫{  , ( )

222
ˆ 2

1
(̂ )

f
f d

f
σ ω ξ ω ω= −∫{  

They quantify the dispersions of 2f  and 
2

f̂
 
around their respective mean 

values u  and ξ  given by: 

( ) 2
2

1
u t f t dt

f
= ∫{    and   ( )

2

2

1
f̂ d

f
ξ ω ω ω= ∫{   

This property implies that the inverse Fourier transform can be numerically 
unstable since useful information to reconstruct f from f̂  with the synthesis 
formula may be located in the very high frequency domain. In particular this 
happens if f  has compact support and is irregular. To reconstruct if we need to use 
( )f̂ ω  for large values of ω . 

We may summarize saying that the Fourier transform is an integral 
transformation of a global nature. 

2.2.2. The Gabor transform 

In order to overcome the disadvantage of the global nature of the Fourier 
transform, an idea consists of localizing the analysis by selecting a portion of the 
signal around a time position, conducting the Fourier analysis and then starting 
again for all the possible positions. It is the principle of the sliding window Fourier 
transform, also called the Gabor transform. 

First of all, we take a window 1 2w L L∈ ∩  centered in 0, with ŵ  being even 
and of energy 1, used to localize the analysis in time. We note 

( ) ( ) 2
,w w i t
b t t b e πω

ω
+= −  for , ,t bω ∈ R . The continuous Gabor transform of 

a signal f  is defined by the following formula: 

Analysis: ( ) ( ) ( )
,, w bf b f t t dtωω = ∫{G        ,bω ∈ {  
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As for the Fourier transform, the Gabor transform is linear, bijective, continuous 
and preserves the angles and the lengths (scalar products and norms). The synthesis 
(or reconstruction) formula is: 

Synthesis: ( )2 ,( ) ( , ) w ( )bf t f b t d dbωω ω= ∫ GR  in 2L         t ∈ {  

The Gabor transform is a Fourier transform local in time, since for each value of 
b we calculate the Fourier transform of ( ) ( )wf t t b− . Indeed: 

( ) ( ) ( ) ( ) ( ) ( )
,, w wbf b f t t dt f t t bωω ω⎡ ⎤= = −⎣ ⎦∫{G F  

The window w  thus restrains the analysis to a domain around the position b. If, 
for example, the window is localized on a segment as in the case of the square 
function [ ]

1
,2

w 1I a aa −= , the value of ( ),f bωG  for fixed b  depends only on the 

values of f  on the segment centered in b : [ ],b a b a− + . 

The Gabor transform is a time-frequency analysis. The 2L  scalar product in can 
be written according to time or frequency: 

( ) ( ) ( )2 2, ,, , w , wb bL L
f b f fω ωω = =G F F     wherefrom: 

( ) ( ) ( ) ( ) ( )
( )2

,
ˆ ˆˆ ˆ, w w

i b

bf b f d f e d
π ξ ω

ωω ξ ξ ξ ξ ξ ω ξ
+ −

= = −∫ ∫{ {
G  

What happens if the window is 
2

w te π−= , which is its own Fourier transform? 
The function ( )w t b−  is localized in the vicinity of b , ( ),f bωG  therefore 
contains information about f  in the vicinity of the position (time) b . Like 

w w=F , ( ),f bωG  also has information on f̂  in the vicinity of the frequency ω . 

The atoms { }, ,
w b bω ω ∈{  

of this transform are sometimes called Gabor wavelets. 

They are complex exponentials, as for the Fourier transform, but attenuated by the 
window w  positioned in b . The latter is zero or essentially zero (i.e. very quickly 
decreasing) apart from an interval centered in 0. It localizes the analyzed function in 
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this interval. For the Gaussian window, Figure 2.5 represents three atoms defined 
by: 

( ) ( )2 2
,w t b i t
b t e eπ πω

ω
− − +=  with 0b = and 1, 2ω =  and 5  

In the three cases the figure shows the envelope (
2tE e π−= ± ) and the real part 

of ,w bω . 

       

Figure 2.5. Envelope and real part of the Gabor wavelets for 1, 2ω = and 5  

The number of oscillations increases with the frequency ω  but the envelope is 
rigid and therefore the temporal resolution remains fixed. It is the major defect of 
this transform. 

2.3. The continuous transform in wavelets 

In order to overcome the disadvantage of the Gabor transform, it is necessary to 
seek a transform allowing a similar analysis but able to act in a whole range of 
temporal resolutions simultaneously. In a certain sense this is achieved by the 
wavelet transform. 

We call a wavelet (or “mother” wavelet) a function 1 2L Lψ ∈ ∩ , admitting 
1n +  zero moments (where n ∈ ’ ), i.e. verifying: 

( ) 0 0, ,pt t dt p nψ = =∫ AR  

The function ψ  has a zero integral. It is also orthogonal to the polynomials of a 
degree lower or equal to n . The function ψ  oscillates, taking positive and negative 
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values. The numbern controls the oscillations of ψ , in the sense that the larger n  
is, the more ψ  oscillates.  

By translation and dilation of the wavelet ψ  we define the atoms of the wavelet 
transform. For any scale a +∗∈ {  and any position b ∈ {  we define an atom of 
the transform by: 

( ) ( ),

1
a b

t b
t

a a
ψ ψ

−
=    

   

                 

Figure 2.6. Translation and translation-dilation of a wavelet 

The family { }, ,a b a b
ψ  is the family of wavelets associated with ψ . Taking ψ  

with an energy of 1 ( 2 1Lψ = ) all the functions ,a bψ  then have a norm of 1. 

Wavelets no longer have a rigid envelope, contrary to the atoms of the Gabor 
transform. They exhibit an accordion behavior: they keep the same form and the 
same number of oscillations and are translated-dilated versions of the same function. 
In the left part of Figure 2.6 we see three wavelets 1, 9ψ − , 1,0ψ

 
and 1,9ψ , obtained 

by translation of the mother wavelet and on the right we have 1 , 92
ψ

−
, 1,0ψ  and 

2,9ψ
 
obtained by translation-dilation of ψ . 

 

b = 9b = 0 b =-9 a = 1/2

b = -9

 a = 1 

b = 0

 a = 2 

b = 9 
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The continuous wavelet transform of the finite energy function of f  is the 
family of coefficients ( ),fC a b

 
defined by: 

Analysis: ( ) ( ) ( ) 2, ,( , ) , ,f a b a b L
C a b f t t dt f a bψ ψ +∗= = ∈ ∈∫{ { {  

The transformation admits an inverse, under an additional condition known as 
admissibility (see the end of this section) and the synthesis (or reconstruction) 
formula is: 

Synthesis: 
] [ , 20,

1
( ) ( , ) ( )f a b

dadb
f t C a b t

K aψ
ψ+∞×= ∫ R  in 2L        t ∈ {  

In a certain way ( ),fC a b , the coefficient of f  on the wavelet ,a bψ , 

characterizes the “fluctuations” of the function f  around the position b, on scale a. 
Let us suppose that ψ  is nil outside of [ ],M M− , then ,a bψ  is nil outside of the 

interval [ ],Ma b Ma b− + + . The value of ( ),fC a b  then only depends on the 

values on f around b in a segment whose length is proportional to a. Let us illustrate 
this idea in Figure 2.7. 

The first graph presents the analyzed function ( )f b  and the support of three 
wavelets positioned around 0b , 1b  and 2b  

for a fixed scale a . The function is 

continuous except in 0b . The second graph contains the wavelet coefficients of 

( ),fC a b  for the same scale a . Around 1b  
and 2b  the coefficients are zero, since 

the function f  is constant on the supports of 
1

,a bψ  and of 
2

,a bψ  yielding 

coefficients equal to the integral of the wavelets. On the other hand, due to 
discontinuity, around 0b  the coefficients are non-zero in a zone with a size 

proportional to the support of ψ  and to the value of a . Thus, inspecting the wavelet 
coefficients we may deduce the presence of a singularity in the signal analyzed 
around 0b  and at scale a . 
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Figure 2.7. Diagram representation of the detection of a singularity 

Many examples are examined in Chapter 6. 

The inversibility of the continuous wavelet transform in 2L  supplemented by the 
fact that it preserves the angles and lengths (scalar products and norms), is ensured 
by: 

THEOREM 2.2. 

Let 1 2L Lψ ∈ ∩ verify the following admissibility condition: 

2 2
0

0

ˆ ˆ( ) ( )
d d

ψ ω ψ ω
ω ω

ω ω
+∞

−∞
= < +∞∫ ∫  

Let Kψ  be the common value of the integrals. 
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Then the scalar product is preserved: 

] [2 20,

1
( , ) ( , ) ( , )gfL

dadb
f g C a b C a b

K aψ
+∞ ×

= ∫ R  

and the synthesis formula: 

] [ , 20,

1
( ) ( , ) ( )f a b

dadb
f t C a b t

K aψ
ψ+∞×= ∫ R  in 2L        t ∈ {  

Ů 

Let us note that the condition of admissibility implies, in particular, that 
ˆ(0) 0ψ =  and therefore ( ) 0t dtψ =∫

{
. 

This condition is difficult to use; often instead of it we prefer a sufficient 
condition of admissibility that is much simpler to verify: 

ψ  real 1 2L Lψ ∈ ∩ , ( ) 1t t Lψ ∈  and ( ) 0t dtψ =∫R  

The transform fC  associates with a function f  of a real variable t , an infinite 
number of coefficients doubly indexed by a +∗∈ {  and b ∈ { . From a certain 
point of view, the transformation goes too far: it is redundant and is sometimes 
desirable to avoid this redundancy. We introduce the discrete transform which in 
certain cases achieves this goal. 

2.4. Orthonormal wavelet bases  

2.4.1. From continuous to discrete transform 

It is legitimate to wonder whether it is necessary to know fC  everywhere on 
+∗ ×{ {  to reconstruct f . When the answer is negative, the use of a discrete 

subset seems a reasonable objective. The idea is as follows: we consider discrete 
subsets of +∗{  and { . Let us fix 0 01 , 0a b> >  and take { }0

p
p

a a ∈∈ ¦  and 
{ }0 0 ,

p
p n

b na b ∈∈ ¦ . Instead of using the family of wavelets: 

( ) ( ) *
,

1
,a b

t b
t a b

a a
ψ ψ +−

= ∈ ∈{ {  



42     Wavelets and their Applications 

for the discrete transform we use the family of wavelets indexed by ¦ : 

2
, 0 0 0 0 0( ) ( ) 1 , 0

p p
p n t a a t nb a bψ ψ

− −= − > >  fixed and ,p n ∈ ¦  

For 2f L∈  we define the discrete wavelet transform of the function f  by: 

( ) ( ) ( ) 2, ,( , ) ,p n p nf L
C p n f t t dt fψ ψ= =∫{        ,p n ∈ ¦  

In the two preceding formulae and hereafter we change notations in order to 
simplify, in the discrete case, the writing of the atoms and coefficients. 

The usual choice 0 2a =  and 0 1b =  is dictated by Shannon’s sampling 

theorem (see [MAL 98] p. 41). It is then natural to tackle a more difficult question: 
does there exist, and under which conditions, a function ψ  such that the family 

{ }
( ) 2, ,j k j k

ψ
∈¦

 where ( ) ( )2
, 2 2

j
j

j k t t kψ ψ− −= −  is an orthonormal base of 

( )2L { ? The answer is closely related to the concept of multi-resolution analysis. 

2.4.2. Multi-resolution analysis and orthonormal wavelet bases 

A multi-resolution analysis of ( )2L {  is a family { }j j
M V

∈
=

¦
 of embedded 

vectorial subspaces with the properties [2.1] to [2.5] below that we can group in 
three blocks: 

– { }j j
V

∈¦  
is a set of approximation spaces, i.e.: 

jV  is a closed subspace of 2L  [2.1] 

1j jV V −⊂  [2.2] 

2
j

j

V L
∈

=
¦
∪

 

 and { }0j
j

V
∈

=
¦
∩  [2.3] 



 Mathematical Framework     43 

Property [2.1] ensures the existence of the orthogonal projection of f  on each 
space jV , a projection that approaches f ; [2.2] is the decreasing property of spaces 
and the improvement of the approximation when j decrease; [2.3] ensures that the 
{ }jV  sequence converges towards the entire 2L  and, thus, that the sequence of 
projections converges towards f ; 

– the jV  spaces are obtained by dyadic dilation or contraction of the functions of 
the single space (for example 0V ): 

1, ( ) (2 )j jj v t V v t V −∀ ∈ ∈ ⇔ ∈¦  [2.4] 

This property characterizes the multi-resolution aspects of the M sequence and 
plays a crucial part in the construction of wavelet bases; 

– a last property relates to the translation of functions. It supposes the existence 
of a function, which makes it possible to build a base of 0V  by integer translation: 

0g V∃ ∈  such that ( ){ }kg t k ∈− Z  is a Riesz base of 0V  [2.5] 

In order to supplement [2.5], let us specify what a Riesz base of 2L  is. The 

family { } 2
k k

e L∈ ⊂Z  is a Riesz base of 2L  if: 

2h L∀ ∈ , 2! ( )lα∃ ∈ Z  such that k k
k

h eα
∈

= ∑
¦

 in 2L  [2.6] 

There exist 0 A B< ≤ < +∞  such that for all 2h L∈  we have: 

2 2 2l L l
A h Bα α≤ ≤   where  

2

1
22

kl k

α α
∈

⎧ ⎫⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑
¦

 [2.7] 

A Riesz base is thus a generating, free system and, in a certain way, property 
[2.7] controls the angles between the basic vectors. In particular, in the case of a 
orthonormal base (Hilbertian base) we have 1A B= =  and [2.7] is then simply 
the Parseval equality. Choosing a Riesz base of 2L  is equivalent to choosing an 
isomorphism between the space of functions ( )2L {  and the space of ( )2l ¦  
sequences. 

Ů 
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On the basis of the M  family we define a second family of subspaces noted 

{ }jW , where jW  is the orthogonal complement of jV
 
in 1jV − : 

1 j jjV V W− = ⊕    with   j jW V⊥  

As opposed to { }jV  spaces, which are approximation spaces, we shall say that 

{ }jW  spaces are detail spaces. 

We obtain a series of properties for the { }j j
W

∈¦
 subspaces, which are useful 

for the geometrical understanding of the construction: 

1( ) (2 )j jw t W w t W −∈ ⇔ ∈  [2.8] 

j kW W j k⊥ ≠  [2.9] 

j kW V j k⊥ ≤  [2.10] 

1J K K JV V W W J K+ <= ⊕ ⊕ ⊕A  [2.11] 

1
jJ

j J
V W

+∞

= +
= ⊕  [2.12] 

( ) { }2
J

jJ
j

L V W
=−∞

= ⊕ ⊕{  [2.13] 

( )2
j

j
L W

+∞

=−∞
= ⊕{  [2.14] 

Let us comment on some of these properties. For example, [2.13] indicates that 
an element of 2L can be written in the form of an orthogonal sum of a rough 
approximation and an infinite number of finer details. Property [2.14] in turn 
expresses the fact that any function of 2L  is an infinite sum of orthogonal details. 
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Let us note 
j

j
VA P f=  and 

j

j
WD P f= , orthogonal projections of 2f L∈  on 

spaces jV  and jW
 

respectively. We then have 1j j jA A D− = +
 

with 
j jA D⊥ . 

Spaces { }jV  are approximation spaces in the following sense: jA  converges to 

f in ( )2L {  when j  tends to −∞ ; in the same way, spaces { }jW  are detail 

spaces in the sense that in 2L  we have, on the one hand, jD  which converges to 0 

when j  tends to −∞  and, on the other hand, 
J

J jf A D
−∞

= + ∑ . In other words, 

for a fixed level of approximation J , the jD  are the corrections to be added to the 
approximation to find f . 

Now let us state the fundamental result associated with multi-resolution analysis, 
noting ( ) ( )2

, 2 2
j j

j kf t f t k
− −= −  for any function f . 

THEOREM 2.3.– ORTHONORMAL WAVELET BASES 

LetM be a multi-resolution analysis of ( )2L { . Starting from g  (see [2.5]), we 

can build a scaling function ϕ  then a wavelet ψ such that: 

{ } { }{ }, , , ,
, ,J k j kk j k j J

J ϕ ψ
∈ ∈ ≤

∀ ∈
¦ ¦

¦  is an orthonormal base of 2L  and 

{ }, ,j k j k
ψ

∈¦
 is an orthonormal wavelet base of 2L  . 

Ů 

The principle of the proof of this theorem is as follows: 

– starting from g  and, thus, from ( ){ }kg t k ∈− Z , construct a function ϕ  such 
that ( ){ }kt kϕ ∈− Z  is an orthonormal base of 0V ; 

– deduce from it that { },j k k
ϕ

∈¦  
is an orthonormal base of jV ; 

– using ϕ , construct a function ψ  such that ( ){ }kt kψ ∈− Z  is a orthonormal 

base of 0W ; 

– deduce from it that { },j k k
ψ

∈¦  
is an orthonormal base of jW ; 

– conclude from it that { }, ,j k j k
ψ

∈¦  
is an orthonormal base of 2L . 
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The delicate points are stages 1 and 3. They are the subject of the two proposals 
stated later. Moreover, they present more completely the properties of the scaling 
function ϕ  and the wavelet ψ . Before stating them and commenting on them, let us 
make two observations. 

NOTE 2.2. 

If M  is a multi-resolution analysis there is an infinity of functions of scale and, 
thus, an associated infinity of wavelets leading to the same analysis. 

 

In addition, there are orthonormal wavelet bases of 2L , i.e. orthonormal bases 

having the form of ( ) ( )2
,

,

2 2
j

j
j k

j k

t t kψ ψ
−

−

∈

⎧ ⎫⎪ ⎪⎪ ⎪= −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭ Z
, which are not associated 

with a multi-resolution analysis (see a counterexample in [DAU 92] p. 136). They 
are, thus, not associated with a scaling function. On the other hand, once ψ  is 

sufficiently regular, there is an underlying multi-resolution analysis. 
Ů 

Some key elements to be memorized are summarized in Table 2.1. 

 

 Functions Spaces Bases jN  jQ  

Approximations 
Scaling 

function ϕ  jV  { },j k k
ϕ

∈Z  

Details Wavelet ψ  jW  { },j k k
ψ

∈Z  

Coarser Finer 

Table 2.1. Key elements of multi-resolution analysis 

2.4.3. The scaling function and the wavelet 

In this section, we state and comment on two proposals, which establish the links 
between the concepts of multi-resolution analysis and orthogonal wavelet and 
propose a manner of building the second starting from the first. This construction 
also shows the fundamental part played by the two-scale equations in the time and 
frequency domains. Let us start with the construction of the scaling function ϕ . 
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PROPOSAL 2.1.– CONSTRUCTION OF THE SCALING FUNCTION 

Let us consider the scaling function ϕ  defined using its Fourier transform ϕ̂  by: 

“
( )

1
2

2

( )

( )
k

g

g k

ω
ϕ ω

ω
∈

=
⎛ ⎞⎟⎜ + ⎟⎜ ⎟⎟⎜⎜⎝ ⎠
∑
¦

"

"
 [2.15] 

Then: 

– 0Vϕ ∈ ; 

– { }0, ( )k k
t kϕ ϕ

∈
= −

¦  
is an orthonormal base of 0V ; 

– two-scale equation for ϕ : 

{ }! k k
a a ∈∃ = ¦ , 2( )a l∈ ¦  such that: 

( ) ( )
1

2 2 k
k

t
a t kϕ ϕ

∈
= −∑

Z
 in 2L  [2.16] 

– ( ) 2
0

i k
k

k

m a e π ωω −

∈
= ∑

¦  
is periodic with period 1, ( )2

0 0,1m L∈  and 

verifies:  

“ ( ) ( )“ ( )
02 . .m p pϕ ω ω ϕ ω ω= ∈ {   [2.17] 

( ) ( ) 22 1
0 0 2 1 , . .m m p pω ω ω+ + = ∈ {   [2.18] 

– more generally, 2
,, 2 (2 )

j
j

j k

k

j t kϕ ϕ
− −

∈

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪∀ ∈ = −⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭ ¦

¦

 

is an orthonormal 

base of jV . 

Ů 
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Let us comment on this result: 

– relation [2.15] defines the scaling function ϕ  starting from g  in the frequency 

domain and leads to an orthonormalization in the time domain;  

– the first two properties show that it is a change of basis in the space 0V ;  

– the third property in turn results from ( ) 12

t
Vϕ ∈ , from the inclusion of 

01V V⊂  and the fact that { }( ) kt kϕ ∈− ¦  is a base of 0V . It can be read differently: 

the sequence { }k k
a ∈¦  being given, [2.16] is a functional equation, of which ϕ  is 

the solution; 

– relation [2.17] is the counterpart in the frequency domain of the two-scale 
equation. It reveals 0m , the discrete Fourier transform of the sequence a ; 

– relation [2.18] is the frequency translation of the orthogonality of the base 
{ }( ) kt kϕ ∈− ¦  of 0V . 

Let us now pass to the construction of the wavelet. 

PROPOSAL 2.2.– CONSTRUCTION OF THE WAVELET 

Wavelet ψ  is defined using its Fourier transform ψ̂ . Let ρ  be a periodic 

function with a period of 1
2

, ( ) 1ρ ω =  for almost all ω ∈ { , and let us pose 

( ) 2 1
01 2( ) ( )im e mπωω ρ ω ω−= +  and define: 

“ ( ) “ ( )1 2 2
( ) m

ω ωψ ω ϕ=  [2.19] 

Then: 

– 0Wψ ∈ ; 

– ( ){ }0,k k
t kψ ψ

∈
= − Z  is an orthonormal base of 0W ; 

– two-scale equation for ψ : 

{ }! k k
b b ∈∃ = ¦  2( )b l∈ ¦  such that 2

1( ) i k
k

k

m b e π ωω −

∈
= ∑

¦
, and: 
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( ) ( )
1

2 2 k
k

t
b t kψ ϕ

∈
= −∑

¦
 in 2L ; [2.20] 

– 1m is periodic with a period of 1, ( )2
1 0,1m L∈  and: 

( ) ( ) 22 1
1 1 2

1 , . .m m p pω ω ω+ + = ∈ {  [2.21] 

( ) ( ) ( ) ( )1 1
0 01 12 2

0 ,m m m mω ω ω ω+ + + =  for almost all ω ∈ {  [2.22] 

– more generally, ( ){ }2

,, 2 2
j

j
j k

k
j t kψ ψ

− −

∈
∀ ∈ = −

Z
Z

 
is an orthonormal 

base of jW ; 

– { }, ,j k j k
ψ

∈¦
 is an orthonormal base of ( )2L { . 

Ů 

Let us comment on this result: 

– relation [2.19] defines the wavelet starting from the scaling function ϕ  in the 

frequency domain using a filter 1m
 
deduced from 0m ; 

– the first two properties affirm that we are producing a function of the detail 
space 0W

 
and considering all the integer translations { }( )t k kψ − ∈ ¦  

an 

orthonormal base of 0W ; 

– the third property in turn results from ( ) 12

t
Wψ ∈ , from the inclusion 

01W V⊂  and the fact that { }( )t k kϕ − ∈ ¦  is a base of 0V , leading to a second 

two-scale equation defining the wavelet. This relation is none other than the 
counterpart in the time domain of relation [2.19] which defines 1m . 

– relation [2.21] is the frequency translation of the orthogonality of the base 
{ }( )t k kψ − ∈ ¦  of 0W . Relation [2.22] in turn expresses the orthogonality 

between spaces 0V  and 0W . 
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A last fundamental comment to conclude this section, relates to the filters 0m  
and 1m . From relations [2.18], [2.19], [2.21] and [2.22] we deduce that: 

( ) ( )

( ) ( )

22
0 1

1 1
0 0 1 12 2

1

( ) ( ) 0

m m

m m m s m

ω ω

ω ω ω

+ =

+ + + =
 

These two relations translate the conditions of perfect reconstruction of the banks 
of underlying filters. They make it possible to consider the construction of wavelets 
not using g  but the filters. This will be exploited, in particular, in Chapter 5. 

2.5. Wavelet packets 

Wavelet packets are a generalization of orthogonal wavelets. They allow a finer 
analysis by breaking up detail spaces, which are never decomposed in the case of 
wavelets. 

They were introduced by Coifman and Wickerhauser [COI 92] at the beginning 
of the 1990s in order to mitigate the lack of frequency resolution of wavelet 
analysis. The principle is to some extent to cut up detail spaces into frequency 
sections. 

2.5.1. Construction of wavelet packets 

Wavelet packets are generated by recurrence. We start with two filters with 
lengths of N , ng  and nh  associated with the orthogonal wavelet with compact 

support ψ  and scaling function ϕ  issued from an MRA of 2L . They are obtained 

on the basis of the sequences a  and b  from the formulae [2.16] and [2.20], so that 

their 2l  norm equals 1. 

By induction we define the sequence of functions ( )n nw ∈’  starting with 

0w ϕ=
 
by: 

( )

( )

2 1

2
0

2 1

2 1
0

( ) 2 2

( ) 2 2

N

nn k
k

N

nn k
k

w t h w t k

w t g w t k

−

=
−

+
=

⎧⎪⎪ = −⎪⎪⎪⎪⎨⎪⎪⎪ = −⎪⎪⎪⎩

∑

∑
 [2.23] 
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Equations [2.23] for 0n =  are reduced simply to two two-scale equations and 
we have 0w ϕ= , the scaling function and subsequently 1w ψ= , the wavelet. We 
thus see how packages generalize wavelets. 

For the Haar wavelet we have 1N = , 0 1
1

2
h h= =  and 0 1

1

2
g g= − = . 

Equations [2.23] then become simply: 

2

2 1

( ) (2 ) (2 1)

( ) (2 ) (2 1)

n nn

n nn

w t w t w t

w t w t w t+

⎧ = + −⎪⎪⎪⎨⎪ = − −⎪⎪⎩
 

0w  is the Haar scaling function and 1w  is the Haar wavelet (see Chapter 4), both 

with support in [ ]0,1 . Then we obtain 2nw  by adding two copies of nw  contracted 

by a factor of 
1

2
 with distinct supports 

1
0,

2
⎡ ⎤
⎢ ⎥
⎣ ⎦

 for (2 )nw t  and 
1
,1

2
⎡ ⎤
⎢ ⎥
⎣ ⎦

 for (2 1)nw t − . 

We obtain 2 1nw +  by subtracting the same versions. For 0n =  to 7  we obtain the 

functions nw  seen in Figure 2.8. 

 

Figure 2.8. Haar wavelet packets 

More generally, on the basis of a more regular orthogonal wavelet we obtain 
smoothed versions of this system of functions, all with support contained within 
[ ]0,2 1N − . Figure 2.9 presents the functions obtained when the original wavelet is 

db2 (see Chapter 4). 
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The doubly indexed set ( ){ } ,n n kw t k ∈ ∈− ’ Z  is an orthonormal base of 
( )2L { . 

 

Figure 2.9. Wavelet packets of db2  

2.5.2. Atoms of wavelet packets 

The atoms of wavelet analysis are constructed by dyadic translation and dilation 
of the functions ϕ  and ψ . For wavelet packets we proceed in a similar fashion on 
the basis of the functions ( ; )nw n ∈ ’  and considering atoms indexed by three 
indices: 

( ) ( ) ( )/2
, 2 2j j

n nj kw t w t k− −= −   for  2,( , )n j k∈ ∈’ ¦  

These atoms are not all useful. For fixed j  the useful values of n  are 
0 2 1jn≤ ≤ − . As in the case of wavelets, k  is the location parameter and j  is 
the scale parameter. What is then the interpretation of n ? 

The idea is that for fixed values of j  and k , ( ) ,n j kw
 
analyzes the fluctuations 

of the signal around the position 2jk , scale 2j
 and all the frequencies 

corresponding to the various useful values of the last parameter n . 
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We may think to link these frequencies to the number of oscillations. By 
attentively examining the wavelet packets associated with the db1 wavelet presented 
previously, the natural order of the functions ( ; 0,..., 7)nw n =  does not agree 
completely with the number of oscillations or passages through 0. 

To restore the property that the central frequency must grow monotonously with 
the order it is necessary to define the frequency order of the packages. It is obtained 
recursively starting from the previous by a permutation of integers noted r  (see 
[MAL 98] p. 327). For the first eight integers the latter yields Table 2.2. 
 

Natural order n  0 1 2 3 4 5 6 7 

Frequency order r(n)  0 1 3 2 6 7 5 4 

Table 2.2. Natural and frequency order of wavelet packets 

As we saw in the preceding figures, 
( )

( )
r n

w t  oscillates approximately n  times. 
This re-ordering is useful for signal analysis (see Chapter 6 for examples). Thus, we 
construct visualizations of the coefficients of wavelet packets in the time-frequency 
plane. 

2.5.3. Organization of wavelet packets 

The set of functions: ( ) ( )( ),, ;n j kj nP w t k= ∈ ¦
 

constitutes the ( , )j n  
wavelet packet. Wavelet packets are naturally organized as a tree. For example, for a 
level of decomposition equal to 3, they are organized as indicated in Figure 2.10. 
For each scale j , which indicates the depth in the tree, the possible values of the 
frequency parameter n are integers from 0 to 2 1j − , which indicates the position 
in the tree. In other words, the notation ,j nP  used is consistent with the usual depth-
position notation of tree nodes labeling. 

Let us note the space generated by the functions of the package ,j nP  as ,j nP . As 
for every j , ,0j jP V=  and ,1 jjP W= , the library of wavelet packet bases contains 
the wavelets bases (see section 2.4.1) but also much else. Let us say a few words 
about some of them. Let us note 0 0,0V P= , then we have: 

– ,1( ; 1)dP d ≥ is an orthogonal base of 0V ; 

– for 0J ≥ , ,1,0( ,( ; 1 ))jJP P j J≤ ≤  is an orthogonal base of 0V . 
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Figure 2.10. Organization of wavelet packets 

Moreover, 1,2 1,2 1( , )j n j nP P+ + +  is an orthogonal base of ,j nP . This property 
gives a precise meaning to the split and, consequently, to the merge, which is the 
inverse process, in the tree of wavelet packets organization. Each developed node 
has the following form: 

 
Figure 2.11. Split and merge in the wavelet packets tree  

Consequently, the set of leaves of any binary sub-tree of a complete binary tree 
corresponds to an orthogonal wavelet packet basis of the initial space. That is, for a 
finite energy signal of 0V , each wavelet packet basis offers a specific manner of 
representation. We can then select the decomposition best adapted to a signal and a 
given objective [COI 92]. 

,j nP
 

1,2j nP +  1,2 1j nP + +  
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2.6. Biorthogonal wavelet bases 

Orthogonal wavelets generate orthonormal bases and constitute easily handled 
families. However, they are difficult to construct, often irregular and implicitly 
defined. Slackening the orthogonality constraint makes it possible to: 

– facilitate construction and, thus, increase the number of possible forms; 

– improve form, symmetry and regularity while more often obtaining explicit 
formulae for the wavelets. 

For example, if we take an interest in the filters associated with wavelets, for 
many problems the “good” filters are finite impulse response (FIR) filters with linear 
phase. Indeed, Kahane and Lemarié-Rieusset (in [KAH 98] p. 454), affirm that “it is 
a general belief in image processing that linear phase filters produce less visual 
artefacts than others. However, for the wavelet transform, linear phase corresponds 
to a symmetric scaling function, whereas FIR corresponds to a compact support 
scaling function”. Can we reconcile the two properties within the framework of 
orthogonal wavelets? The Haar function is the only compactly supported scaling 
function generating a symmetric orthonormal basis [DAU 92]. 

In summary, the condition of orthogonality is a very strong constraint. By 
somewhat slackening this constraint it is possible to build wavelets presenting more 
attractive properties at the price of introducing a minor difficulty into the 
calculation. We no longer produce only one wavelet but two wavelets ψ  and ƒψ  in 
duality, called biorthogonal wavelets. The orthogonal case corresponds to ƒψ ψ= . 

2.6.1. Orthogonality and biorthogonality 

Let us take a moment to discuss duality from the perspective of duality of bases. 

In the simple cases, like that of spaces 2L , when we have a, let us say oblique, basis 

{ }iB e=  we can nevertheless make calculations as if the basis were orthonormal. 

We can associate a second basis ƒ { }iB e= # , whose elements are defined by the 

relations of duality ( ),i j i j
e e δ=# . Then using the co-ordinates of X  in the two 

bases: ( , )i ix X e=  and ( , )i ix X e=# #  we write i ii iX x e x e= =∑ ∑# # . The two 

bases appear in the decomposition and reconstruction formulae: the signal analysis 
formula ( ( , )i ix X e= ) uses the basis B , whereas the synthesis formula 

( iiX x e= ∑ # ) uses the dual basis ƒB . 
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Let us also note that even if B  is an oblique basis, calculations are made as if it 
were orthonormal. Indeed, let us note two vectors X  and Y  by describing each one 
in one of the two bases: iiX x e= ∑ #  and i iY y e= ∑ # . Then the scalar product is 

written: 

( , ) ( , ) ( , )i ij j j ii j i j i ij i
i j i j i

X Y x e y e x y e e x y x yδ= = = =∑ ∑ ∑ ∑ ∑ ∑ ∑# # # # # #  

No summation limit appears in these formulae. They are valid in the finite 
dimension as well as in the infinite dimension ( ,i j ∈ ¦ ), similarly to the case of 

finite energy signals spaces.  

It may be the case that the basis and the dual basis are generated by two 
wavelets, one used for analysis, the other for synthesis. Can we use the acquired 
freedom intelligently? The answer is yes. It is possible to make rather different 
requests on ψ  and ƒψ . The crucial point stems from the link between the analysis 

and synthesis wavelet which is rather loose. We can partially uncouple the 
properties of each of the two bases according to the objectives, and we can largely 
separate the constraints that we wish to formulate for the analysis and synthesis 
atoms. For example, in image processing for compression we will prefer a 
compactly supported analysis wavelet with many zero moments, so that the 
representation of the image is as sparse as possible. Such a wavelet will be rather 
asymmetric and irregular – and therefore ill-adapted to reconstruction, for which we 
wish to use a regular and symmetric wavelet – in order to minimize the visual 
artefacts. The framework of biorthogonal wavelets makes it possible to meet these 
two requirements simultaneously. 

Complementarily, biorthogonal wavelets can be very regular (C∞ ) while 
preserving a finite support (see, for example, [KAH 98] p. 355). In Chapter 4 we 
will find some examples of biorthogonal wavelets. 

2.6.2. The duality raises several questions  

In section 2.4.1 we have passed from the continuous wavelet transform to the 
discrete transform generating the orthogonal wavelet bases. Between these two 
extreme situations, one of which is very redundant and the other the most 
parsimonious possible, there exists an intermediate construction. It is the concept of 
wavelet frame [DAU 92], which will not be further detailed here. Let us note simply 
that these are systems generating ( )2L R  constructed using a wavelet ψ , sweeping 
the entire pallet from hyper redundancy to the most economic representation. 
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To every wavelet frame we can always associate a dual frame. In the case of the 
orthogonal wavelet basis the frame consists of translation-dilation forms of a single 
function ψ . Of course, the dual frame being identical to the original frame, it is also 
generated by translation-dilation forms of a function ψ#  (which is simply ψ ). But, 
in general, there is no reason for the dual frame to be generated by a wavelet ψ# . 
Under what condition is it so? 

Other questions arise: if ψ  is associated with a scaling function ϕ  in a multi-
resolution analysis M  can we affirm that ψ#  is also associated with a scaling 
function ϕ#  in a multi-resolution analysis M# ? Which links do the two multi-
resolution analyses maintain? 

The answers to all these questions are not provided in this book; however, the 
books of Cohen [COH 92c] and Kahane and Lemarié-Rieusset [KAH 98] cover a 
large number of these aspects. 

2.6.3. Properties of biorthogonal wavelets 

Let us suppose that wavelets are constructed and let us analyze their properties. 

The two families { }j j
M V

∈
=

¦
 and § ƒ{ }j

j
M V ∈= ¦  are multi-resolution 

biorthogonal analyses of ( )2L { . They were first introduced in 1990 by Cohen, 

Daubechies and Fauveau [COH 92b] and are characterized by the property: 

( ) §2
0 0L V V

⊥= ⊕{ . 

Let us note by jV , jW , §jV
 
and §jW the spaces generated respectively by the 

families of functions{ },j k k
ϕ

∈¦
, { },j k k

ψ
∈¦

, ƒ{ },j k k
ϕ

∈¦  
and ƒ{ },j k k

ψ
∈¦

. These 

spaces and these functions verify a set of relations highlighting multi-resolution and 
biorthogonality properties. Let us start with the first aspect: 

– for each family of spaces { }j j
E

∈¦
 we pass from jE

 
to 1jE −  

by dilation; 

– we have the inclusions: 

1j jV V −⊂ , 1j jW V −⊂ , ƒ ƒ 1j jV V −⊂    and   § ƒ 1j jW V −⊂  
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– finally, there are the decompositions: 

1 1j j jV V W+ += ⊕  and ƒ ƒ §1 1j j jV V W+ += ⊕  

but they are not orthogonal. 

Let us now pass to the relations of duality. The set of properties below is 
obtained on the basis of the following result: 

ƒ( ) 20,0, ,, pk k pL
ϕ ϕ δ=   ( 1= if k p= , 0 if not) [2.24] 

– the couples of spaces ( jV , ƒ jV ) and ( jW , § jW ) satisfy: 

ƒ( ) 2,, ,, j pj k k pL
ϕ ϕ δ=    and   ƒ( ) 2,, ,, j pj k k pL

ψ ψ δ=
 

– the couples of spaces ( jV , § jW ) and ( ƒ jV , jW ) are orthogonal and thus we 

have: 

ƒ( ) 2,, , 0j pj k L
ϕ ψ =    and   ƒ( ) 2, ,, 0j k j p L

ϕ ψ =  

– thanks to inclusions, n jV W⊥ #
 
and n jV W⊥#

 
for n j≥ . 

– inclusions also imply that for n j≠  we have biorthogonality relations: 

ƒ( ) 2, ,, ,, j p n jn k k pL
ψ ψ δ δ= , wherefrom n jW W⊥ #

 
for n j≠ . 

In this context, usable projections are the oblique projections jP  to
 jV  parallel 

to the direction of ( )jV ⊥#
 
which are written for a signal f : 

,( ) kj j k
k Z

P f c ϕ
∈

= ∑ #  where ƒ ,( , )k j kc f ϕ=#  
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A question remains: how can such wavelets be constructed? The filters approach 
proves as effective as in the context of orthogonality and the steps are completely 
similar. This method is so interesting that it is the subject of a detailed description in 
Chapter 5 devoted to the construction of wavelets. Here we limit ourselves to a few 
indications. 

First of all, let us note that within the framework of orthogonal wavelets two 
filters noted 0m

 
and 1m  (see proposals 2.1 and 2.2) play a crucial part. The first 

one, 0m  is associated with ϕ  and the second one 1m  is associated with the wavelet 

ψ . In the biorthogonal case, in addition to this couple, two other filters noted ƒ0m  

and ƒ1m  are associated with ϕ#  and ψ#  respectively. 

The construction strategy consists of seeking finite impulse response filters 
which satisfy a condition known as perfect reconstruction, and then deducing from 
them the scaling functions and the wavelets. 

The perfect reconstruction condition written with the four filters 0m , ƒ0m , 1m
 

and ƒ1m , leads to a system of two relations which is simplified for FIR filters into 
only one relation linking 0m  and ƒ0m : 

( )§ ( ) ( )§ ( )1 1
0 0 0 02 2 1m m m mω ω ω ω+ + + =  

If a pair §( )0 0,m m  satisfies this condition, for the two other filters we will take, 
for example, almost as in the orthogonal case (see proposal 2.2): 

( ) § ( )

§ ( ) ( )

1
01 2

1
01 2

i

i

m e m

m e m

πω

πω

ω ω

ω ω

−

−

⎧⎪ = +⎪⎪⎪⎨⎪⎪ = +⎪⎪⎩

 

We can then pass to wavelets. In the sense of tempered distributions and having 
the relations ( ) ( ) ( )

1
ˆ ˆ2 mψ ω ω ϕ ω=  and ƒ“ ( ) § ( ) ƒ ( )

12 mψ ω ω ϕ ω= "  we build two 
functions ϕ  and ƒϕ  and then two functions ψ  and ƒψ  candidates for being 
wavelets, by: 

( ) ( )0
1

ˆ 2 n

n

mϕ ω ω
∞

−

=
= ∏   and  ƒ“ ( ) § ( )0

1
2 n

n

mϕ ω ω
∞

−

=
= ∏  
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A difficulty appears, stemming from the fact that the functions produced do not 
always have finite energy. Additional explanations are found in Chapter 5. 

Let us make a last comment on a particular case of biorthogonal wavelets: the 
semi-orthogonal wavelets. 

2.6.4. Semi-orthogonal wavelets 

Let ϕ and ƒϕ  be two functions such that the families { }0,k k
ϕ

∈¦
 and ƒ{ }0,k k

ϕ
∈¦

 

verify the property [2.24] and generate the same space; in other words, let us 

suppose that §0 0V V= . The families { }0,k k
ϕ

∈¦  
and ƒ{ }0,k k

ϕ
∈¦  

are thus two dual 

(or biorthogonal) bases of 0V . Then, for j ∈ ¦  we have:
 
§
j jV V=

 
and §j jW W= . 

In fact, we have a single multi-resolution analysis, the orthogonality between spaces 

{ }jW
 
is preserved and each space jV  and jW  is provided with two biorthogonal 

bases. 

One of the simplest methods of constructing new wavelet bases consists of 
building bases known as semi-orthogonal wavelet bases by appropriate modification 

of the bases of spaces { }jV
 
and { }jW  using an orthogonal wavelet ψ  associated 

with a scaling function ϕ  and a multi-resolution analysis (MRA) of 2L . 

More precisely, Aldroubi and Unser [ALD 93] show that if ϕ  is a scaling 
function associated with an MRA and if p  is an acceptable filter (essentially p  
invertible for the convolution), then function pϕ  defined by: 

 ( )*p
k

k

p p t kϕ ϕ ϕ
∈

= = −∑
¦

 

is another scaling function generating the same MRA. 

Of course, the original scaling function is characterized by the two-scale relation 

( ) ( )
1

2 2 k
k

t
a t kϕ ϕ

∈
= −∑

Z
. A similar relation exists for pϕ  via a filter expressed 

using p  and a . However, the family of ( ){ }p
k

t kϕ ∈− Z  is no longer orthogonal. 

In fact, we work with a single multi-resolution analysis, the orthogonality between 

the { }jW  spaces is preserved, and we sacrifice the orthogonality internal to each 
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space: each space jV  and jW  is provided with two biorthogonal bases. In [ABR 97] 

and [ABR 95] we will find the processes of calculating the four filters associated 
with the pair of wavelets in duality using a  and p . 

Various techniques are used in the studies exploiting this idea: linear 
combinations, projections and convolutions. Let us specify the second one a little. 

Let us suppose that we take an a priori form noted f  and that we seek a scaling 
function fϕ

 
approaching f . A possible solution consists of using an already 

existing MRA and defining fϕ  by ( )
0

f VP fϕ = , the orthogonal projection of f  

to the space 0V , which is the best approximation of f  by an element of 0V  in the 

sense of least on squares. The projection fϕ  is then written as 

( )( )f
f k

k

p t kϕ ϕ
∈

= −∑
¦

 and the problem is solved, provided that ( )fp  is an 

admissible function. Obviously, we may wish to seek not a scaling function but a 
wavelet fψ  resembling a given form f . The solution that consists of projecting on 

0W , i.e. choosing ( )
0

f WP fψ =  leads to a solution under a similar admissibility 

condition. 

 



 



Chapter 3 

From Wavelet Bases to the Fast Algorithm 

3.1. Introduction 

Stéphane Mallat [MAL 89] proposed the fast algorithm of decomposition-
reconstruction for the discrete wavelet transform at the end of the 1980s. He thus 
established the link between orthonormal wavelet bases, whose mathematical 
development was then recent, and traditional filter banks in signal processing. 

This unifying point of view brought the two communities closer, enabled an 
increased development of applications for signals or images and aroused theoretical 
interest. For example, the fruitful filters approach led to wavelet synthesis or 
compression. 

Moreover, two unexpected features have to be pointed out: the algorithm is 
remarkably simple and its complexity grows only linearly with the size of data, i.e. it 
is lower than that of the fast Fourier transform. This aspect is obviously crucial for 
applications. 

The chapter begins with the discrete wavelet transform algorithm of sampled 
signals (shortened to DWT for discrete wavelet transform). It is a purely discrete 
framework, in the sense that instead of a function we decompose a finite sequence, 
using finite impulse response filters. In the language of signal processing, it is the 
implementation of two-channel [EST 77] filter banks and filter banks with perfect 
reconstruction (this point of view will be developed in the second part of Chapter 5). 

Then we consider the justification of the algorithm coming back to the 
framework of continuous time signals provided by multi-resolution analyses 
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introduced in Chapter 2. We then show the close connection between the previous 
algorithm and the calculation of the components of a function on a basis of wavelets. 

Next we tackle the various problems raised by the concrete implementation of 
the algorithm, in particular, the phase of initialization and the manner of treating 
edge effects. We then evaluate its algorithmic complexity, before extending the 
DWT to the case of decomposition-reconstruction of images.  

Finally, thanks to the DWT, we define a transform invariant by translation, often 
called SWT (for stationary wavelet transform). Indeed, the discrete wavelet transform 
is not invariant by translation in time, as opposed to the continuous wavelet transform. 
The SWT [COI 95], [PES 96] and [NAS 95] restores this property and is used 
primarily for signal or image denoising (see Chapters 7 and 8). 

3.2. From orthonormal bases to the Mallat algorithm 

Making a decomposition means calculating the co-ordinates of the signal on the 
vectors of the wavelet base.  

Let us recall the framework presented in Chapter 2. Let { }j j
M V

∈
=

¦
 be a 

multi-resolution analysis of ( )2L { . It is a family of decreasing closed vectorial 

subspaces, which enable the approximation of functions and have properties 
involving dilation and translation of functions.  

For fixed j ∈ ¦  the space jW  is defined as the orthogonal complement to the 

space jV  in space 1jV − . For a function 2f L∈  the decomposition in wavelets 

consists of calculating the co-ordinates of orthogonal projections of f  on jV  and 

jW  respectively, noted 
j

j
VA P f=  and 

j

j
WD P f= . These co-ordinates in spaces 

jV  and jW  (provided with the orthonormal bases: { },j k k
ϕ

∈¦  
and { },j k k

ψ
∈¦

 

where ϕ  and ψ  are the scaling function and the wavelet) are nothing but 

approximation and detail coefficients defined by the following relations: 

,  jj
p j p

p

A a ϕ
∈

= ∑
¦  

with ( ) ( )2 2, ,, ,j j
p j p j pL L

a A fϕ ϕ= =  

,  jj
p j p

p

D d ψ
∈

= ∑
¦

 with ( ) ( )2 2, ,, ,j j
p j p j pL L

d D fψ ψ= =  
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The calculations of signal co-ordinates on the vectors of the wavelets basis are 
performed as usual by evaluation of scalar products. The cost of the numerical 
approximation of the corresponding integrals is high. 

Fortunately, in the context of wavelet bases we may exploit three properties: 

− on the one hand, there is only a finite number of co-ordinates to calculate if the 
signal is compactly supported; 

− on the other hand, the basis is organized by level of scale; 

− finally, the basic functions of a scale are related to those of the following one 
by a two-scale relation.  

 
Consequently, if the co-ordinates 1ja −  of the approximation at a scale are 

known, the co-ordinates ja and jd  on the following scale may be deduced from it 
almost immediately, by means of a very simple transformation: a convolution, 
which is a linear filter, followed by dyadic sub-sampling. 

Before justifying the algorithm outlined above let us present it in two phases: 
filters and the effective calculation of the coefficients. 

3.3. Four filters 

For an orthogonal wavelet ψ , the associated scaling function ϕ  satisfies a 

fundamental relation, which is the following twin scale equation: 

( ) ( )0,
1

2 2 n nn
n n

t
a a t nϕ ϕ ϕ

∈ ∈
= = −∑ ∑

Z Z
 

The filters involved in the discrete wavelet transform and in the inverse 
transform (noted IDWT) are closely linked to the ( )n na ∈¦  sequence. If ϕ  (and, 

consequently, ψ ) have compact support, the sequence ( )n na ∈¦  
has only a finite 

number of non-zero elements. We may then see this sequence as a low-pass filter. 
This filter, noted w , thus lets the low frequencies through and retains the high ones. 
It has a finite impulse response (FIR), with length noted K , its sum is equal to 1 and 

its norm is 
1

2
. 

Using the filter w  we define four filters with finite impulse response, size K and 
norm 1. The decomposition filters are noted (indicated by the final D): LoD and 
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HiD. The first is low-pass (indicated by the initial Lo) and the second is high-pass 
(indicated by the initial Hi). The two reconstruction filters (indicated by the final R) 
are noted LoR and HiR. 

 

Filters Low-pass High-pass 

Decomposition LoD  HiD  

Reconstruction LoR  HiR  

Table 3.1. Four filters 

 

Figure 3.1. Filters for the wavelet db6 

The two reconstruction filters are linked by: 

w
LoR

w
=  and ( ) 1

11 k
k K kHiR LoR−

+ −= −  for 1,2, ,k K= …   
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They are mirror filters in quadrature. The two decomposition filters are obtained 
via mirror image of the reconstruction filters: 

1k K kLoD LoR + −=  and 1k K kHiD HiR + −=  for  1,2, ,k K= …  

For the db6 wavelet (see Chapter 4) we represent in Figure 3.1: 

− the filter corresponding to the scaling function, at the top; 

− the four filters deduced from it, in the middle; 

− modules of the filters transfer functions, at the bottom. 

3.4. Efficient calculation of the coefficients 

The algorithm of the DWT of a signal X  of length N  consists of performing 
several elementary decomposition steps. 

Starting with the signal X , the first step produces two vectors of coefficients: 

approximation coefficients 1a  and detail coefficients 1d . These vectors are obtained 
by a convolution1 of the signal X  with the low-pass filter LoD  for the 
approximation and with the high-pass filter HiD  for the detail, followed in both 

cases by a dyadic decimation2. They are approximately 
2

N
 in length. 

More precisely, the first step of the algorithm can be represented by Figure 3.2a. 

X

1

1a

HiD

LoD 2←

2← d
 

Figure 3.2a. Representation of the first step of the DWT where F
 

represents convolution by F and 2↓ represents decimation 

                                   
1 The convolution of a signal X  by a filterF is defined by [ ]n n k k

k

X F X F−∗ = ∑ . 

2 The decimation of a signal X is defined by ( )Y dec X= where 2n nY X= . 
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The operations brought into play naturally lead to consider higher order 
decompositions. The following step thus consists of breaking up the approximation 
coefficients 1a  into two, replacing the signal X  by 1a  and producing 2a  and 2d . 
The algorithm follows the same path. The decomposition enabling the passage from 
level j  to level 1j +  is illustrated in Figure 3.2b. 

j+1

j+1a

HiD

LoD 2←

2← d

ja

 

Figure 3.2b. Representation of a DWT decomposition step with initialization at: 0a X=  

It is thus a very simple algorithm. We now will justify it referring back to the 
elements introduced in Chapter 2 concerning orthonormal wavelet bases. 

3.5. Justification: projections and twin scales 

Let us note respectively by 
j

VP
 
and 

j
WP

 
the orthogonal projection operators, on 

jV  and jW , and for 2f L∈  let us note the corresponding projections 
j

j
VA P f=  

and 
j

j
WD P f= . The properties of spaces { }jV  and { }jW  imply whereas:  

1j j jA A D− = +
 
with j jA D⊥  [3.1] 

Spaces { }jV  are approximation spaces in the following sense: jA  converges to 

f  when j  tends to −∞ ; in the same way, spaces { }jW  are detail spaces in the 

sense that jD  are the differences between two successive approximations: 

1j j jD A A−= − . Moreover, for fixed J  the jD  are the corrections to add to the 

roughest approximation JA  in order to find f , since 
J

J j

j

f A D
=−∞

= + ∑ . 
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In addition, spaces jV
 

and jW
 

are endowed with orthonormal bases: 

{ },j k k
ϕ

∈¦
 and { },j k k

ψ
∈¦

 where ϕ  and ψ  are the scaling function and wavelet 

associated with the multi-resolution analysis (for a function g , we note 

( )2
, 2 2

j j
j kg g t k− −= − ). Consequently, we may describe the approximation and 

detail coefficients by the following relations valid for all j ∈ ¦ : 

,   jj
p j p

p

A a ϕ
∈

= ∑
¦

 with ( ) ( )2 2, ,c , ,j j
p j p j pL L

a A fϕ ϕ= =  [3.2] 

,    jj
p j p

p

D d ψ
∈

= ∑
¦

 with ( ) ( )2 2, ,, ,j j
p j p j pL L

d D fψ ψ= =  [3.3] 

The Mallat algorithm, which is a fast algorithm of decomposition-reconstruction, 
is based on the three previous relations. In the decomposition part we calculate the 

co-ordinates ja  and jd  of approximation jA  and detail jD  using the co-ordinates 
1ja −

 of the approximation 1jA − . In the reconstruction part the inverse operation is 
performed. 

3.5.1. The decomposition phase  

With relations [3.1], [3.2] and [3.3] we obtain: 

( ) 2

1
,,j j

k j k L
a A ϕ−=  and ( ) 2

1
,,j j

k j k L
d A ψ−=  [3.4] 

Indeed, for all k ∈ ¦  using [3.1] and the orthogonality between jV  and jW  we 

have: 

( ) ( )
( ) ( )

2 2

2 2

1
, ,

, ,

, ,

, , 0

j j j
j k j kL L

jj j
j k j k kL L

A A D

A D a

ϕ ϕ

ϕ ϕ

− = +

= + = +
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In the same way, by replacing ϕ  by ψ  we obtain for the detail coefficient: 

( ) ( )
( ) ( )

2 2

2 2

1
, ,

, ,

, ,

, , 0

j j j
j k j kL L

jj j
j k j k kL L

A A D

A D d

ψ ψ

ψ ψ

− = +

= + = +
 

By substituting 11
1,

jj
p j p

p

A a ϕ−−
−

∈
= ∑

¦
 to the two equalities of [3.4], it 

follows: 

  

( )

( )

( )

( )

2
2

2

2

2

2

11
1,, ,

1
1, ,

11
1,, ,

1
1, ,

, ,

,

, ,

,

j jj
p j pk j k j kL

p L

j
p j p j k Lp

j jj
p j pk j k j kL

p L

j
p j p j k Lp

a A a

a

d A a

a

ϕ ϕ ϕ

ϕ ϕ

ψ ϕ ψ

ϕ ψ

−−
−

∈

−
−

∈

−−
−

∈

−
−

∈

⎛ ⎞⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

=

⎛ ⎞⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

=

∑

∑

∑

∑

¦

¦

¦

¦

 [3.5] 

Let us calculate the scalar products appearing in [3.5]: 

( ) ( ) ( )

( ) ( ) ( )

2

2

( 1) ( 1)2 2
1, ,

( 1) ( 1)2 2
1, ,

, 2 2 2 2

, 2 2 2 2

j jj j
j p j k L

j jj j
j p j k L

x p x k dx

x p x k dx

ϕ ϕ ϕ ϕ

ϕ ψ ϕ ψ

− − −− − −
−

− − −− − −
−

⎧⎪⎪ = − −⎪⎪⎪⎪⎨⎪⎪ = − −⎪⎪⎪⎪⎩

∫

∫

{

{

 

Changing the variable 2
2

jy
x k−= − , which is equivalent to 

12 2j jx y k−= +  we obtain: 

( ) ( ) ( )

( ) ( ) ( )

2

2

1
1, , 2 2

1
1, , 2 2

, 2 ( 2 )

, 2 ( 2 )

y
j p j k L

y
j p j k L

y p k dy

y p k dx

ϕ ϕ ϕ ϕ

ϕ ψ ϕ ψ

−

−

⎧⎪ = − −⎪⎪⎪⎪⎨⎪ = − −⎪⎪⎪⎪⎩

∫

∫
{

{

 [3.6] 
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We may now use the scaling equation verified by ϕ  and the two-scale equation 
defining the wavelet ψ  (see equations [2.16] and [2.20] in Chapter 2): 

( ) ( )

( ) ( )

1
0,2 2

1
0,2 2

y
n nn

n n

y
n nn

n n

a a y n

b b y n

ϕ ϕ ϕ

ψ ϕ ϕ

∈ ∈

∈ ∈

= = −

= = −

∑ ∑

∑ ∑
¦ ¦

¦ ¦  

and

 

Since { }0,k k
ϕ

∈¦
 is an orthonormal base of 0V , we conclude from [3.6] that: 

( )
( )

2

2

1, , 2

1, , 2

, 2

, 2

j p j k p kL

j p j k p kL

a

b

ϕ ϕ

ϕ ψ

− −

− −

⎧⎪ =⎪⎪⎨⎪ =⎪⎪⎩

 [3.7] 

The scalar products of the basic functions of the scales 1j − and j  do not depend 
on j . Consequently, the same elementary step of decomposition applies to all the 
scales. 

Returning to the coefficients j
ka  and j

kd  relations [3.5] and [3.7] then make it 
possible to write: 

1
2

1
2

2

2

j j
pk p k

p

j j
pk p k

p

a a a

d a b

−
−

∈
−

−
∈

⎧⎪ =⎪⎪⎪⎪⎨⎪ =⎪⎪⎪⎪⎩

∑

∑
¦

¦

 [3.8] 

In view of computerized implementation it is interesting to define the two filters 
involved in this decomposition phase. They were introduced previously for the 
particular case of the finite filters. 

[ ]{ }

[ ]{ }
n n

n n

LoD LoD

HiD HiD

∈

∈

⎧ =⎪⎪⎪⎨⎪ =⎪⎪⎩

¦

¦

with

with
 

[ ]

[ ]

2

2

nn

nn

LoD a

HiD b

−

−

=

=
 

With these notations relations [3.8] are then written: 

[ ]

[ ]

1
2

1
2

j j
p k pk

p

j j
p k pk

p

a a LoD

d a HiD

−
−

∈
−

−
∈

⎧⎪ =⎪⎪⎪⎪⎨⎪ =⎪⎪⎪⎪⎩

∑

∑
¦

¦

 [3.9] 
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In the spaces of sequences we can introduce the operation of decimation 
( )y dec x=  defined by 2n ny x=  for n ∈ ¦ . In filter theory, decimation is often 

noted 2↓ . With this operation we easily verify that [3.9] is finally written: 

( )
( )

1

1

j j

j j

a dec a LoD

d dec a HiD

−

−

⎧⎪ = ∗⎪⎪⎨⎪ = ∗⎪⎪⎩
 [3.10] 

The coefficients of approximation jA  and detail jD  are therefore calculated 
simply using the coefficients of approximation 1jA − : a convolution (a filter) 
followed by a decimation. We can represent [3.10] by Figure 3.3a. 

j

ja

HiD

LoD 2←

2← d

j-1a

 

Figure 3.3a. Representation of equation [3.10] where F represents 

convolution by F  and 2↓ represents decimation 

D

jd

ja

j-1a

 

Figure 3.3b. Compact representation of equation [3.10] 

3.5.2. The reconstruction phase  

To calculate the co-ordinates of 1jA −  knowing those of jA  and jD  we again 
start with the equality 1j j jA A D− = + . For all k ∈ ¦  we obtain: 

( ) ( )
( ) ( )

2 2

2 2

1 1
1, 1,

1, 1,

, ,

, ,

j j j j
k j k j kL L

j j
j k j kL L

a A A D

A D

ϕ ϕ

ϕ ϕ

− −
− −

− −

= = +

= +
 [3.11] 
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from which by developing jA  and jD  and noting that the permutation of ∑ and 

∫ hidden in the scalar product is valid: 

2 2

1
, ,1, 1,, ,j j j

p pj p j pk j k j k
p pL L

a a dϕ ϕ ψ ϕ−
− −

∈ ∈

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑
¦ ¦  

thus: 

( ) ( )2 2

1
, ,1, 1,, ,j j j

p pj p j pk j k j kL L
p p

a a dϕ ϕ ψ ϕ−
− −

∈ ∈
= +∑ ∑

¦ ¦
 [3.12] 

By again taking the result for the scalar products obtained in [3.7] and putting it 
in equality [3.12], we deduce that: 

1
2 22 2j j j

p pk k p k p
p p

a a a d b−
− −

∈ ∈
= +∑ ∑

¦ ¦
 [3.13] 

As for the decomposition, two filters are involved in the reconstruction: 

[ ]{ }

[ ]{ }  

n n

n n

LoR LoR

HiR HiR

∈

∈

⎧ =⎪⎪⎪⎨⎪ =⎪⎪⎩

¦

¦

with

with

[ ]

[ ]

2

2

nn

nn

LoR a

HiR b

=

=
 [3.14] 

These two filters are easily deduced from those introduced during the 
decomposition phase: 

( )LoR inverse LoD=  and ( )HiR inverse HiD=   

where ( )y inverse x=  is defined by: ( ) ( ),y k x k k= − ∈ Z . 

With the [3.14] notations, relation [3.13] is written: 

[ ] [ ]1
2 2

j j j
p pk p k pk

p p

a a LoR d HiR−
− −

∈ ∈
= +∑ ∑

¦ ¦
 [3.15] 
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In the space of sequences we can also introduce the operation of zeros insertion 
defined by ( )y ins x=  with 2 nny x=  and 2 1 0ny + =  for n ∈ ¦ . In filter theory 

insertion is often noted 2↑ . Relation [3.15] takes the form: 

( ) [ ] ( ) [ ]1j j j
k p k pk p p

p p

a ins a LoR ins d HiR−
− −

∈ ∈
⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∑ ∑

¦ ¦
 

and ultimately: 

( ) ( )1j j ja ins a LoR ins d HiR− = ∗ + ∗  [3.16] 

The coefficients of approximation 1jA −
 are thus obtained simply from the 

coefficients of approximation jA and detail jD by an insertion followed by a 
convolution (of a linear filter) represented in Figures 3.4a and 3.4b. 

HiR2

LoR2

←
←jd

j-1a

ja

 

Figure 3.4a. Representation of a DWT reconstruction step where F represents 

 the convolution by F and 2↑ represents the zero insertion 

R

jd

ja

j-1a

 

Figure 3.4b. Compact representation of a DWT reconstruction step 
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3.5.3. Decompositions and reconstructions of a higher order 

In the two preceding sections the possibility of carrying out high order 
decomposition and reconstruction appeared obvious. They simply translate the 
following successive equalities: 

1

1 1 1

1

j j j

j j j j

j J J j

A A D

A A D D

A A D D

−

− + +

−

= +

= + +

= + + +

A

A

 [3.17] 

where all the decompositions are orthogonal. 

Schematically we may represent the reiterated decomposition phases in the 
following form. 

D

D

D

R

R

R

jd

ja

j+1d

j+1a

jd

ja

j-1a

j+1d

j+1a

j-1a

 

Figure 3.5. Representation of several steps of DWT  

decomposition (top) and reconstruction (bottom) 

3.6. Implementation of the algorithm 

The theoretical justification of the algorithm must be supplemented in order to 
arrive at the discrete wavelet transform of finite sequences. In fact, to be precise, we 
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will use finite sequences and wavelets linked to FIR filters. This section explains 
how to implement the DWT efficiently. 

3.6.1. Initialization of the algorithm 

The first difficulty is of course the initialization of the algorithm. For a given 
finite energy function f  the preceding section provides a process to deduce the co-
ordinates ja  and jd  of approximation jA  and of detail jD  from the co-ordinates 

1ja −
 of approximation 1jA − . But where should we start? 

A first solution, adapted if we start with a known function ( )f t  with t ∈ { , 

consists of selecting a desired precision 0ε > . The properties of multi-resolution 
analyses imply that f  can then be approximated by its orthogonal projection onto 

one of the approximation spaces { }jV , let us say 
0j

V , noted 
0 0

( )
j

j Vf P f= , so that 

20j L
f f ε− < . It is then enough to calculate the co-ordinates of 

0j
f  on the basis 

of 
0j

V
 

by a numerical evaluation of the sequence 0ja  given by: 

( ) ( )0 0
2 20 0, ,, ,

j j
k j k j kL L

a A fϕ ϕ= = . The algorithm is then initialized. 

In general, we do not know the values of ( )f t  for t ∈ { , but only the values 
of f in certain points: ( ), 1,...,if t i n= . A possible procedure to initialize the 
algorithm consists of returning to the preceding situation by interpolating the 
function between the it  and carrying out an extrapolation outside of [ ]1, nt t  to 
construct a function f#  defined on { . 

Often we only have an equispaced sampling of the f  function: ( ), 1,...,f i i nδ =  
where δ  is the sampling step. We could of course reuse the preceding solution but 
we prefer to suppose more abruptly that we observe the coefficients 0a  of the 
approximation 0A  directly and assimilate the sampled values of f  at 0a . Naturally, 
we thus make an error that, in general, cannot be controlled, except, for example, for 
orthogonal wavelets of the coiflets family: coifn (see Chapter 4). 

Nevertheless, this process has an interesting interpretation. Considering the 
sampled signal as a sequence of ( )2l ¦ , the decomposition has a sense within the 
framework of the multi-resolution analyses of ( )2l ¦  (which are not explored here, 
but can be found in [FRA 99]). Indeed, to any multi-resolution we can associate 
( )2L { , a multi-resolution analysis of ( )2l ¦ . We write ( )2

0V l= ¦  provided 
with the canonical base with sequence and the coarser spaces jV  and jW , i.e. 
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associated with 0j > , are generated by the translations-dilations of the usual 
filters. 

3.6.2. Calculation on finite sequences 

The last difficulty relates to the support of observations, necessarily finite, over 
which we know the function or a real life signal. Indeed, the application of the 
algorithm passes by convolution, producing a signal, which is not a sequence 
indexed by ¦  but a finite sequence and the first and the last terms of the 
convolution product invoke sequence terms that are not defined. Two large solution 
families are available to resolve this difficulty. 

The first one is of a theoretical nature. It consists of defining the wavelet bases 
not over ( )2L { , but over [ ]( )2 ,L a b . These are known as wavelets on the interval. 
There exist many constructions of this type, the best known being undoubtedly that 
of Cohen, Daubechies and Vial [COH 93]. Theoretically interesting, it nevertheless 
presents difficulties when applied to a real life problem. First of all, it is relatively 
complicated and difficult to adapt. Moreover, it requires signal pre-processing 
before applying the DWT to it, as well as post-processing of the coefficients 
obtained, creating edge effects that may sometimes be very awkward. 

For this reason we often prefer methods that are easier to implement and adapt, 
for example, in the case of signals whose length is not a power of 2. They consist of 
arbitrarily prolonging the signal by inserting pseudo-observations outside the 
support. This is the subject of the following section. 

3.6.3. Extra coefficients 

This extension must be carried out not only for the signal X  for the first stage of 
the algorithm, but also for each following stage. Thus, it generates extra coefficients 
whose number depends linearly on the size of the wavelet. There are various usual 
methods: 

− extension by zeros. In this case we suppose that the signal is zero everywhere 
outside of the original support. The disadvantage is to artificially create 
discontinuities at the edges; 

− symmetrization. This method extends signals and images outside of their 
support by repeating near edge values by symmetry. This method, in general adapted 
to the images, creates first order derivative discontinuities; 
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− regular extrapolation. We perform a low degree polynomial extrapolation 
outside the support: typically 0 (repetition of the first and the last value respectively) 
or 1 (linear extrapolation). This method is poorly adapted to noisy signals; 

− periodic extension. This method consists of supposing that the signal is 
periodic. It makes it possible to minimize the number of extra coefficients. Of 
course, the periodization of a signal, in general, leads to discontinuities at the edges. 

These methods of extension make it possible to associate a finite sequence with a 
time (in Z ) signal, for which the algorithm has been theoretically justified. In 
particular, we have the following properties: 

− preservation of the norm square by decomposition: 

2 21 12X a d= +  ; 

− orthogonality: 

A D⊥  and 22 2X A D= + ; 

− perfect reconstruction: 

X A D= +  

These properties verified for extended signals are lost for the initial finite 
sequence. Perfect reconstruction is preserved providing that the reconstruction part 
to the manner of truncating the coefficients obtained is adapted, for example, by 
selecting the central part of the convolution product. 

3.7. Complexity of the algorithm 

Let us suppose that the filters LoD  and HiD  have K  non-zero coefficients and 
that the signal (identified as 0a ) has a length N . Then the signals ja  and jd  have 
the length 2 j N− , if we neglect the possible extra coefficients according to the 
adopted calculation path. 
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The elementary decomposition step making it possible to pass from level 1j −  
of approximation coefficients to level j  of detail and approximation coefficients is 
given by: 

( )
( )

1

1

j j

j j

a dec a LoD

d dec a HiD

−

−

⎧⎪ = ∗⎪⎪⎨⎪ = ∗⎪⎪⎩
 

Each of the two above lines requires approximately 12 j NK− +  operations. This 

elementary decomposition step thus requires 22 j NK− +  additions and 
multiplications. Decomposition at level J  corresponds to J  successive elementary 
decompositions for 1j =  to j J= . It therefore requires 

1
2

1 0
2 2 2 4

J J
j j

j j

NK NK NK
−

− + −

= =

⎛ ⎞⎟⎜ ⎟= ≤⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑ ∑  additions and multiplications. 

Consequently, the global complexity of the wavelet decomposition up to 
theJ level of a signal with length N  by K  non-zero coefficient filter bank is of the 
order of 4NK . 

NOTE 3.1. – a direct implementation of formulae [3.9], whose expression is less 
elegant than a convolution followed by a decimation, requires twice fewer 
operations. The complexity obtained in this case is obviously the same, up to a 
constant 2. Let us mention that other algorithms are possible and improve the 
constant still further; let us quote in particular the polyphase method (see Chapter 5). 

Ů 

By proceeding similarly we demonstrate that the reconstruction step requires at 
most 4NK  additions and multiplications. The discrete wavelet transform, thus, has 
a total complexity in ( )O N , i.e. linear with respect to the size of the data, with a 
constant term that grows linearly with respect to the length of the filters used. It is 
completely remarkable, since its complexity is lower than that of the fast Fourier 
transform.  

3.8. From 1D to 2D 

For the images, a similar algorithm is usable with wavelets and scaling functions 
obtained by the tensor product of one-dimensional wavelets (see Chapter 8). 
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Figure 3.6a. Basic step for the decomposition in wavelets for images 

This type of transformation using a two-dimensional DWT leads to a 
decomposition of the approximation coefficients at the j  level in four distinct 

components: the approximation and details according to three orientations, 
horizontal, vertical and diagonal, at the level 1j + . Calculations are simple: we 

filter the rows of ja  and decimate them; then, we filter and decimate the columns of 
the matrices obtained. Figure 3.6 presents the basic step of wavelet decomposition 

for images where 
rows

F
 (respectively 

F

columns
) represents the convolution by F  of 

rows (respectively columns) of the matrix, 2 1↓  represents the decimation of the 

columns (conservation of even column index) and 1 2↓  represents the decimation 

of the lines (conservation of even index lines). For the reconstruction, the basic step 
is given by Figure 3.6b where 2 1↑  represents upsampling (zero insertion) of the 

columns and 1 2↑  represents the upsampling of rows.  
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Figure 3.6b. Basic step for wavelet reconstruction for images 

It should be mentioned that for biorthogonal wavelets the same algorithms can 
be used, but the decomposition filters, on the one hand, and the reconstruction 
filters, on the other, are obtained from two distinct scaling functions associated with 
two multi-resolution analyses in duality (see Chapter 2). 

3.9. Translation invariant transform 

The traditional DWT suffers from a known disadvantage: it is not invariant by 
translation in time, contrary to the continuous wavelet transform. This means that, 
even in the case of periodic extension of a signal X , the DWT of a translated 
version of X  is not, in general, the translated version of the DWT of X . 

A simple example of this difficulty appears in the analysis of a square form type 
signal X . It is composed in the following manner: 256 zero values, then 511 values 
equal to 1 and, finally, 257 zero values. Using the DWT, with the Haar wavelet, on 
the left of Figure 3.7 we find the level 1 analysis of X  and on the right, the level 1 
analysis of X  translated by one time step. 
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Figure 3.7. At the top, the original signal: a square form signal. In the middle, two 

level 1 approximations and at the bottom, corresponding level 1 details 

The two analyses are very different, as the two details obtained show. In 
particular, none of them presents the two discontinuities simultaneously. For the first 
one (on the left), the detail is zero in the vicinity of position 256 and strong in the 
vicinity of 768, whereas for the second one (on the right) it is the opposite.  

To restore invariance by translation the idea is to calculate the average of the 
DWT of all the suitably synchronized translated-periodized signals stemming from 
X  (called ε -decimated DWT). This defines the translation invariant transform 
called SWT. 

This property is interesting in several applications such as, for example, the 
detection of signal breakdown points. The principal application of the SWT is 
denoising (see Chapters 7 and 8). The principle consists of averaging several 
denoised signals. Each one of them is obtained using the usual denoising method, 
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but applied to the coefficients of an ε -decimated DWT. Hereafter the SWT is 
defined for signals whose size is divisible by 2J , where J  is the maximum level of 
decomposition. 

3.9.1. ε -decimated DWT  

There are several slightly different ways to use the DWT. Let us recall that the 
base of its calculation rests on a convolution followed by decimation. The latter 
preserves only the elements with an even index. In fact, decimation may very well 
be carried out preserving odd index elements instead of the even index elements and 
this alternative presents itself naturally at each step of the decomposition process. If 
the systematic calculation of all the possible decompositions of the original signal is 

carried out, we obtain 2J  decompositions at the J  level. 

To identify the choice made at the j  stage, the variable jε  is defined. We write 
1jε =

 
(respectively 0), if at the j  stage we decimate the elements with an odd 

(respectively even) index. Each decomposition is therefore identified by a sequence 
of 0 and 1: 1 Jε ε ε= …

 
and is called an ε -decimated DWT. 

3.9.2. Calculation of the SWT 

It is possible to obtain all the ε -decimated DWT for a given signal of a length 
N  by calculating the approximation and detail coefficients for each possible 
sequence ε. This operation could be performed iteratively using a slightly modified 
version of the basic step of the DWT calculation. This is the standard version, for 
which 0ε = , but for 1ε =  the odd index elements will be retained during the 
decimation step. Of course, it is not the correct manner to calculate the ε -decimated 
DWT, since many calculations are carried out repeatedly. We will therefore describe 
another method: the translation invariant transform called SWT. 

The algorithm used for the calculation of the SWT is very similar to that of the 
DWT. For level 1 all ε -decimated DWT (only two at this level) for a given signal 
can be obtained by convoluting the signal with the appropriate filters, as in the case 
of the DWT but without decimating. In this case the approximation and detail 
coefficients at level 1, noted here (1)a  and (1)d  (and no longer 1a  and 1d  as for the 
DWT) both have a size N , the size of the original signal. This operation can be 
represented by the diagram presented in Figure 3.8. 
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Figure 3.8. 1D SWT: decomposition at level 1 

 

Figure 3.9. 1D SWT: decomposition algorithm 

Convolution with filter F
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In general, the ( )ja  approximation coefficients at the j  level are convoluted 
with an upsampled version of the two usual filters to produce the approximation 

( 1)ja +  and detail ( 1)jd +  coefficients at the 1j +  level. The algorithm can be 
represented by the diagram presented in Figure 3.9. 

Let us now show with a simple example how to extract an ε -decimated DWT 
on the basis of the structure containing the approximation and detail coefficients of 
the SWT. Let us decompose a sequence of eight numbers at the 3J =  level using 
the SWT with an orthogonal wavelet. The calculations carried out at each step by 
the algorithm are grouped in the following tables. In the latter we note the 
coefficients of approximation or detail 1( , , , )ja j ε ε…  or 1( , , , )jd j ε ε…  at the j  

level obtained for the ε -decimated DWT characterized by the sequence 

1, , jε ε ε⎡ ⎤= ⎢ ⎥⎣ ⎦… . 

Step 0 (origin data) 

At the start the signal is identified with the 0 level approximation, and the eight 
coefficients are all noted a(0). 

a (0) a (0) a (0) a (0) a (0) a (0) a (0) a (0) 

Step 1 

By filtering process the algorithm decomposes the vector of a(0) into two: the 
first line contains the two details obtained for 1 0ε =  and for 1 1ε = , interlaced 
and noted ( )11,d ε . Similarly, we find approximations in the second line. 

d(1,0) d(1,1) d(1,0) d(1,1) d(1,0) d(1,1) d(1,0) d(1,1) 

a(1,0) a(1,1) a(1,0) a(1,1) a(1,0) a(1,1) a(1,0) a(1,1) 

Step 2 

The algorithm no longer affects the first line of the table containing the level 1 
details. On the other hand, the two approximations of level 1 are broken up into 2, 
and we construct: 

− four level 2 details are the ( )1 22, ,d ε ε  and figuring in the second line; 

− four level 2 approximations noted similarly. 
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d(1,0) d(1,1) d(1,0) d(1,1) d(1,0) d(1,1) d(1,0) d(1,1) 

d(2,0,0) d(2,1,0) d(2,0,1) d(2,1,1) d(2,0,0) d(2,1,0) d(2,0,1) d(2,1,1) 

a(2,0,0) a(2,1,0) a(2,0,1) a(2,1,1) a(2,0,0) a(2,1,0) a(2,0,1) a(2,1,1) 

Step 3 

d(1,0) d(1,1) d(1,0) d(1,1) d(1,0) d(1,1) d(1,0) d(1,1) 

d(2,0,0) d(2,1,0) d(2,0,1) d(2,1,1) d(2,0,0) d(2,1,0) d(2,0,1) d(2,1,1) 

d(3,0,0,0) d(3,1,0,0) d(3,0,1,0) d(3,1,1,0) d(3,0,0,1) d(3,1,0,1) d(3,0,1,1) d(3,1,1,1) 

a(3,0,0,0) a(3,1,0,0) a(3,0,1,0) a(3,1,1,0) A(3,0,0,1) a(3,1,0,1) a(3,0,1,1) a(3,1,1,1) 

If 1, , Jε ε ε⎡ ⎤= ⎢ ⎥⎣ ⎦…  with 0iε =  or 1  we then obtain 2 8J =  ε -decimated 

DWT. The choice of a sequence ε  makes it possible to extract the corresponding 
ε -decimated DWT from the table representing the values of the SWT. Let us note 
Cε  the structure of decomposition of an ε -decimated DWT for a given ε . Then we 

can extract the latter from the SWT decomposition structure by selecting the 
appropriate coefficients in the following manner: 

 

d(1,ε1) d(1,ε1) d(1,ε1) d(1,ε1) 

d(2,ε1,ε2) d(2,ε1,ε2)   

d(3,ε1,ε2,ε3)    

Cε =  

 

a(3,ε1,ε2,ε3)    

For example, the ε -decimated DWT corresponding to [ ] [ ]1 2 3, , 1, 0,1ε ε ε ε= =  
is represented in bold characters in the sequence of tables presented in the previous 
example.  

We may easily extend the previous results to the two-dimensional case and the 
SWT algorithm for images is represented by the diagram proposed in Figure 3.10. 

Let us also note that the sizes of all the coefficient structures obtained by 
decomposition (approximation and details) are all equal to the size of the original 
image X . 
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Figure 3.10. 2D SWT: decomposition algorithm 

3.9.3. Inverse SWT 

Each ε -decimated DWT corresponding to a given ε  can be inversed. We can 
thus reconstruct the original signal from a given ε -decimated DWT characterized 

by 1, , Jε ε ε⎡ ⎤= ⎢ ⎥⎣ ⎦… . 

The idea of the inverse SWT (ISWT) not detailed here is to average the obtained 
inverse forms for each ε -decimated DWT. This can be carried out recursively, 
moving from level J  to level 1 . Following the same principle this algorithm can be 
generalized to the two-dimensional case. 

For more information on the SWT it would be useful to refer to [COI 95], [NAS 
95] and [PES 96]. 

 



 



Chapter 4 

Wavelet Families 

4.1. Introduction 

Wavelet analysis, as opposed to Fourier analysis, provides additional freedom 
since the choice of atoms of the transform deduced from the analyzing wavelet is 
left to the user. Moreover, according to the objectives of wavelet processing, we 
may prefer the continuous transform to the discrete transform, if the redundancy is 
useful for analyzing the signal. We would make the opposite choice, if we were 
looking for signal compression. In the latter case we must restrict ourselves to 
wavelets with filters, whereas in the former case almost any zero integral function is 
appropriate. 

Since the Haar base appeared at the beginning of the last century, since renamed 
the Haar wavelet, passing by Gaussian Morlet wavelets, Meyer wavelets [MEY 90] 
(obtained using ad hoc construction) and Daubechies wavelets [DAU 88] and [DAU 
92] that are the most widely used, numerous wavelets regularly appear in books and 
are made available in specialized software applications. Construction of new 
wavelets was very intense in the first ten years of their young history, but recently it 
has become less regular and bears on increasingly specific goals, often associated 
with limited application contexts. In Chapter 5 we will find some wavelet 
construction methods. 

This chapter proposes a mini-genealogy of well-known wavelet families. Their 
presentation is organized according to the numerous properties that make it possible 
to differentiate between them and make a selection by prioritizing one aspect or 
another depending on the context and the objectives. For each wavelet family we 
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present the sketch of the construction process, the principal properties and the 
graphic representation of a typical wavelet of the family. 

In the majority of cases, orthogonal or biorthogonal wavelets (which have a 
compact support and allow discrete decompositions using the fast algorithm) are 
directly defined by their associated filters. The wavelet, however, is not directly 
accessible, since no analytical formula defines it. Nonetheless, by using an algorithm 
straightforwardly deduced from the Mallat reconstruction algorithm, it is easy to 
obtain excellent approximations of the implicitly defined wavelet. The end of this 
chapter thus deals with the cascade algorithm which is also used in this work to 
build the graphs presenting wavelets and scaling functions associated with multi-
resolution orthogonal or biorthogonal analyses. 

4.2. What could we want from a wavelet? 

There are several types and families of wavelets whose properties differ along 
the following principal criteria: 

− the support of the functions ψ , ψ̂  (and also ϕ , ϕ̂ ) or speeds of convergence 

to 0 of the functions ( )tψ  and ˆ( )ψ ω  when the time t  or the frequency ω  tend to 

infinity, which quantifies the localization of the wavelet in time and frequency 
respectively; 

− the symmetry, which is useful in order to avoid dephasing; 

− the number of zero moments of ψ or ϕ , which is useful for compression; 

− the regularity, which is useful in order to obtain reconstructed smooth and 
regular signals or images. 

Other criteria are associated with two properties, which enable the use of the fast 
wavelet transform algorithm and parsimonious coding: 

− the existence of the scaling function ϕ ; 

− the orthogonality or biorthogonality of the analysis stemming from it. 

Two less crucial properties may be added: the existence of an explicit formula 
and the ease of calculation. 
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4.3. Synoptic table of the common families 

Before detailing some common wavelet families, in Table 4.1 we draw up the list 
of those presented in this chapter with the associated abbreviations in order to make 
reading easier. 

 

Names of the wavelet families Abbreviation 

Haar wavelet haar 

Daubechies wavelets Db 

Symlets sym 

Coiflets coif 

Biorthogonal wavelets bior 

Meyer wavelet meyr 

Discrete approximation of the Meyer wavelet  dmey 

Battle and Lemarié wavelets btlm 

Gaussian wavelets gaus 

Mexican hat mexh 

Morlet wavelet morl 

Complex Gaussian wavelets cgau 

Complex Shannon wavelets shan 

Complex B-spline frequency wavelets fbsp 

Complex Morlet wavelets cmor 

Table 4.1. List of presented wavelets 

With respect to the desirable properties stated in the first section of this chapter, 
these families of wavelets are distributed as indicated in Table 4.2. In this synoptic 
table the properties are found in rows and the wavelet families in columns; only the 
boxes concerned are ticked. 
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4.4. Some well known families 

Now let us detail the definition and the construction of these families, grouping 
them according to four main properties: existence of associated filters, orthogonality 
or biorthogonality, compact or not compact support, real or complex wavelets. Table 
4.3 summarizes these various properties. 

 Wavelet families 
 
 

Properties 
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Admissible1 X X        X  X X X X 
Infinite regularity  X X X       X  X X X X 
Arbitrary regularity    X  X X X X       
Orthogonal with compact support     X X X X        
Biorthogonal with compact support         X       
Symmetry X X X X X    X X X X X X X 
Asymmetry      X          
Near symmetry       X X        
Arbitrary number of zero moments      X X X X       
Existence of ϕ    X X X X X X X       

Zero moments for ϕ         X        

Orthogonal analysis   X X X X X X        
Biorthogonal analysis   X X X X X X X       
Exact reconstruction ≈ X X X X X X X X X ≈ X ≈ X X 
FIR filters     X X X X X  X     
Continuous transformation X X X X X X X X X X      
Discrete transformation   X X X X X X X  X     
Fast algorithm     X X X X X  X     
Explicit expression X X   X    * X  X X X X 
Complex wavelet            X X X X 
Complex continuous transformation            X X X X 
Approximation with FIR           X     

≈ Nearly exact reconstruction   * Explicit expression for splines 
FIR: finite impulse response 

Table 4.2. Properties of the wavelet families 

                                   
1 See condition of admissibility of Theorem 2.2 in Chapter 2. 
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Wavelets with filters Wavelets without filters 

With compact support With non-compact 

support 
Real Complex 

Orthogonal Biorthogonal Orthogonal 

dB, haar, sym, 
coif 

bior meyr, dmey, btlm 

gaus, mexh, 
morl 

cgau, shan, 
fbsp, cmor 

Table 4.3. Principal properties of wavelet families 

Wavelets with filters are associated with multi-resolution orthogonal or 
biorthogonal analyses; discrete transform and fast calculations using the Mallat 
algorithm are then possible. Wavelets without filter, on the other hand, are useful for 
the continuous wavelet transform. 

4.4.1. Orthogonal wavelets with compact support 

The strategy of construction of orthogonal wavelets with compact support 
motivated by the use of the fast Mallat algorithm is based on the direct action on the 
filter 0m  (see Chapter 2), which generates the scaling function. The work of 
Daubechies at the end of the 1980s and at the start of the 1990s has marked a 
decisive stage in the diffusion of wavelet methods. 

4.4.1.1. Daubechies wavelets: dbN 

This family of wavelets with one parameter, due to Daubechies (see [DAU 92] p. 
115, 132, 194 and 242) is the first one to make it possible to handle orthogonal 
wavelets with compact support and arbitrary regularity. We will call N the order of 
the dbN wavelet. 

This family contains the Haar wavelet, db1, which is the simplest and certainly 
the oldest of wavelets. It is discontinuous, resembling a square form. 
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Figure 4.1. The scaling function (on the left) and the wavelet (on the right): Haar 

The Haar wavelet is defined by: 

( ) 1xψ =  if [ [0, 0.5x ∈ , ( ) 1xψ = −  if [ [0.5,1x ∈  and 0 if not. 

The associated scaling function is the function:  

( ) 1xϕ =  if [ ]0,1x ∈  and 0 if not. 

Except for db1, the wavelets of this family do not have an explicit expression. 
However, the square modulus of the transfer function of the associated filter h is 
explicit and relatively simple: 

let 
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db4 
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db10 

Figure 4.2. Daubechies wavelets: dbN 

This family has the following properties: 

− the ψ  and ϕ  support length is 2 1N − . The number of zero moments of ψ  is 

N; 

− dbN wavelets are asymmetric (in particular for low values of N) except for the 
Haar wavelet; 

− the regularity increases with order. When N becomes very large, ψ  and ϕ  

belong to NC µ  where 0.2µ ≈ . This value Nµ  is too pessimistic for relatively 

small orders, as it underestimates the regularity; 

− the analysis is orthogonal. 
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The wavelets of this family for the orders from 2 to 10 are presented in Figure 
4.2. Moreover, for two of them (db4 and db8), we also find in Figure 4.3, apart from 
the wavelet, the scaling function and the four associated filters (two for 
decomposition, two for reconstruction). 

 

  

Figure 4.3. Two Daubechies wavelets: db4 (on the left) and db8 (on the right) 

4.4.1.2. Symlets: symN 

Symlets constitute a family of almost symmetric wavelets proposed by 
Daubechies by modifying the construction of the dbN. Apart from the symmetry, the 
other properties of the two families are similar. Symlets of orders 2 to 8 (sym1 is 
simply the Haar wavelet) are presented in Figure 4.4. 

The idea of construction consists of re-using the 0m  function introduced for 

dbN, considering 2
0( )m ω  as a function W of the variable iz e ω= . We can 

factorize W in various manners in the form of 1( ) ( ) ( )W z U z U z−= , since the roots 

of W with module different from 1 go in pairs: if 1z  is a root then 1
1z
−  is also a 

root. By constructing U  so that its roots are all of module < 1 we construct the 
Daubechies wavelets dbN. The filter U  has a minimal phase. Another option, 
attained by optimizing factorization so that the filter U  has an almost linear phase, 
produces much more symmetric filters: the symlets. 

For two of them (sym4 and sym8), in Figure 4.5 we find the wavelet, the scaling 
function and the four associated filters. 
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sym 2 sym 3 sym 4 

 
sym 5 

 

sym 6 

 

sym 7 

 

sym 8 

Figure 4.4. Symlets: symN 

  

Figure 4.5. Two symlets: sym4 (on the left) and sym8 (on the right) 

4.4.1.3. Coiflets: coifN 

Constructed by Daubechies at the request of Coifman (see [DAU 92] p. 258), 
coiflets constitute a family of wavelets with an unusual property. Not only, as for the 
two previous families, the wavelet ψ  associated with coifN has 2N  zero moments, 
but also the scaling function ϕ  that has an integral equal to 1 has 2 1N −  zero 
moments. The two functions ϕ  and ψ  have a support with a length of 6 1N − . 
Coiflets of orders 1 to 5 are represented in Figure 4.6. 
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coif1 

 
Coif2 

 
coif3 

 

 
coif4 

 
coif5 

Figure 4.6. Coiflets: coifN 

For two of them (coif3 and coif5) in Figure 4.7 we find the wavelet, the scaling 
function and the four associated filters. 

 

  

Figure 4.7. Two coiflets: coif3 (on the left) and coif5 (on the right) 
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As we can see, coiflets, as well as the associated scaling functions, are much 
more symmetric than the Daubechies wavelets dbN.  

With respect to the length of the support, coifN can be compared to db3N or 
sym3N. From the point of view of the number of zero moments of ψ , coifN can be 
compared to db2N or sym2N. 

The principal interest of coiflets lies in the following property: if f is a 
sufficiently regular function, then the approximation coefficient ( ),, j kf ϕ  for a 
sufficiently large j  is estimated well by /22 (2 )j jf k− − , i.e. a sampled value of the 
function f . Moreover, if f  is a polynomial of a degree equal to 1N − , the 
estimate corresponds to the exact value. This property is used to control the 
difference between the development of a given signal on ,j kϕ

 
and a sampled 

version of the signal. 

4.4.2. Biorthogonal wavelets with compact support: bior 

Biorthogonal wavelets extend the families of orthogonal wavelets (see Chapter 
2). It is a well-known fact in the filter theory community that symmetry and perfect 
reconstruction are incompatible (except for the Haar wavelet) when the same FIR 
filters are used for decomposition and for reconstruction process. To circumvent this 
difficulty two wavelets are introduced instead of one: 

− the first one, ψ# , is used for analysis, and the coefficients of a signal s  are 

( ) ( )
, ,j k j kc s x x dxψ= ∫ ## ; 

− the other one, ψ , is used for synthesis: , ,
,

j k j k
j k

s c ψ= ∑ # . 

The wavelets ψ  and ψ#  are linked by duality relations: 

, ', '( ) ( ) 0j k j kx x dxψ ψ =∫ #    for 'k k≠  or  'j j≠  

0, 0, '( ) ( ) 0k kx x dxϕ ϕ =∫ #    for 'k k≠  

It thus becomes possible to concentrate the properties desirable for analysis (the 
number of zero moments for example) in the wavelet ψ# , while the properties 
interesting for synthesis (regularity, symmetry) can be concentrated in ψ . 

Figure 4.8 presents biorthogonal wavelets constructed by Daubechies (see [DAU 
92] p. 259 and 262-285). For each of them we find the graphs of the ψ  and ψ#  
functions represented in Figure 4.8. 



100     Wavelets and their Applications 

    
bior1.3 bior1.5 

    
bior2.2 bior2.4 

    
bior2.6 bior2.8 

    
bior3.1 bior3.3 

    
bior3.5 bior3.7 

    
bior3.9 bior4.4 

    
bior5.5 bior6.8 

Figure 4.8. Biorthogonal wavelets with compact support: bior 
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As we can see, the ψ and ψ#  functions can have very different regularities. The 
wavelets ψ  and ψ# , as well as the scaling functions ϕ  and ϕ# , have compact 
support generating two dual multi-resolution analyses which enable the use of the 
fast Mallat algorithm for calculations. Let us note that wavelets ψ#  and ψ  of 
biorNr.Nd have Nr and Nd zero moments respectively. 

Let us note, finally, that the roles of the pairs ( , )ϕ ψ  and ( , )ϕ ψ##  are symmetric 
and that they may therefore be exchanged to obtain another couple of biorthogonal 
wavelets. 

4.4.3. Orthogonal wavelets with non-compact support 

4.4.3.1. The Meyer wavelet: meyr 

The meyr wavelet is one of the first wavelets. It was constructed by Meyer in the 
mid-1980s (see [DAU 92] p. 117, 119, 137 and 152). 

It is an infinitely derivable orthogonal wavelet but it does not have compact 
support. The graphs of the ψ  and ϕ  functions are represented in Figure 4.9. 

 

Figure 4.9. Meyer wavelet: scaling function (on the left) and wavelet (on the right) 
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The ψ  and ϕ  functions are both defined in the frequency domain, using an 
auxiliary function noted ν : 

( )( )
( )( )

1/2 /2

1/2 /2

3
(2 ) sin 1

2 2

3ˆ( ) (2 ) cos 1
2 4

0

i

i

e

e

ω

ω

π
π ν ω

π
π

ψ ω π ν ω
π

−

−

⎧⎪ −⎪⎪⎪⎪⎪⎪⎪= −⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

if

if

if

2 4

3 3

4 8

3 3

2 8
,

3 3

π π
ω

π π
ω

π π
ω

≤ ≤

≤ ≤
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⎣ ⎦

   

where 4 2 3( ) (35 84 70 20 )a a a a aν = − + −  with [ ]0,1a ∈ . 

( )( )

1/2

1/2

(2 )

3
ˆ( ) (2 ) cos 1

2 2

0

π

π
ϕ ω π ν ω

π

−

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪= −⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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2 4

3 3

4
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π
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π π
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π
ω

≤

≤ ≤
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Changing the auxiliary function ν  we obtain a family of functions that generate 
an orthogonal analysis under certain conditions for ν . 

The function ψ  is not compactly supported, but when x → ∞  it converges to 0 

as in the next formula: 

, nn C∀ ∈ ∃’  such that 2( ) (1 ) n
nx C xψ −≤ +  

Moreover, ψ  is infinitely derivable and the same property of decrease applies to 
each of the derivatives. The ψ  function is thus rapidly decreasing. 

4.4.3.2. An approximation of the Meyer wavelet: dmey 

Since the ψ  function does not have compact support, it is difficult to use it in 

practice because it requires the use of infinite impulse response filters. There are, 
nevertheless, FIR approximations of this wavelet enabling fast decomposition (see 
[ABR 95] p. 268). In Figure 4.10, in addition to the wavelet, we find the scaling 
function and the four associated filters. 
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Figure 4.10. FIR approximation of the Meyer wavelet 

4.4.3.3. Battle and Lemarié wavelets: btlm 

The Battle and Lemarié family of wavelets is one of the first and appeared 
towards the end of the 1980s. Its construction is based on the spline functions (see 
[DAU 92] p. 146-151). In fact, there exist two forms of this wavelet: one providing 
an orthogonal analysis, the other not. 

For 1N =  the scaling functions are linear splines. For 2N =  the scaling 
functions are compactly supported quadratic splines. More generally, for any n,  
n ∈N , N , B-splines of degree N are defined by: 

1
1/2 /2 sin( /2)

ˆ( ) (2 )
/2

N
ie κω ω

ϕ ω π ω
ω

+
− ⎡ ⎤

= ∈⎢ ⎥
⎢ ⎥⎣ ⎦

{  

where 0κ =  if N  is odd and 1κ =  if N  is even. 
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This formula can be used to construct filters. For 2N M=  or 2 1N M= +  
the two-scale relation is written as: 

1

1
0

( ) 2 (2 1 )
N

jN
N

j

x C x M jϕ ϕ
+

−
+

=
= − − +∑  

This family of wavelets also has the following properties: 

− for even (or odd) N , ϕ  is symmetric with respect to 1/2x =  (or 0x = ) 
and ψ  is antisymmetric (or symmetric) with respect to 1/2x = ; 

− the analysis becomes orthogonal if the ϕ  and ψ  functions are appropriately 
transformed. For 1N = , for example, we write: 

«
( )

( )

( )( )

2
1/2 1/2

1/22 2

4 sin /2
3 (2 )

1 2 cos /2

ω
ϕ ω π

ω ω

⊥ −=
+

; 

− the support of ϕ  is compact but the supports of ψ  and of ϕ⊥  are not. 
Nonetheless, the decrease when time goes to infinity is exponential; 

− the ψ  wavelets are 1N −  times derivable. 

4.4.4. Real wavelets without filters 

In certain situations the capacity for parsimonious coding is a secondary 
objective. The capacity of accurate and local analysis of the functions requires 
redundant time and scale analyses. For this reason we discard the requirement of 
generating bases and concentrate on wavelets that verify very weak admissibility 
conditions. These wavelets do not have an associated scaling function and thus have 
no filters, but have the advantage of having an explicit definition formula. We 
provide some examples of such wavelets with real values. 

4.4.4.1. The Mexican hat: mexh 

It is a function proportional to the second derivative of the Gaussian density 
function (see [DAU 92] p. 75): 

( ) ( )( ) 21/ 4 2 /22
1

3
xx x eψ π− −= −  
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It oscillates very little as we can see from its graph represented in Figure 4.11. 

 
Figure 4.11. Mexican hat mexh 

4.4.4.2. The Morlet wavelet: morl 

This function verifies the condition of admissibility only roughly; despite the fact 
that it is a standard function (see [DAU 92] p. 76) defined by: 

2 /2( ) cos(5 )xx Ce xψ −=  

where C is a normalization constant used for the reconstruction.  

Its graph is represented in Figure 4.12 and it shows that it oscillates much more 
than the Mexican hat. 

 

Figure 4.12. Morlet wavelet: morl 
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4.4.4.3. Gaussian wavelets: gausN 

We may generalize the Mexican hat by introducing the one-parameter family of 

Gaussian derivatives. We start with 
2

( ) x
pf x C e−= and consider the p  order 

derivative of f  sequence pC
 
so that 

2( ) 1pf = . The graph of the 8th Gaussian 

derivative is represented in Figure 4.13. 

 

Figure 4.13. Eighth derivative of a Gaussian function: gaus8 

4.4.5. Complex wavelets without filters 

In this section we examine some wavelets or wavelet families with complex 
values, which can be found in the book by Teolis (see [TEO 98] p. 62-65). 

4.4.5.1. Complex Gaussian wavelets: cgau 

We can extend the real one-parameter family of Gaussian derivatives to the 

complex case. We start with 
2

( ) ix x
pf x C e e− −= and consider, as previously, the 

order p  derivative of f . Here are the real and imaginary parts, the modulus and the 
angle of the wavelet of this family for 8p = . 
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Figure 4.14. Eighth derivative of a complex Gaussian function: cgaus8 

The real part of ψ  coincides with the corresponding real wavelet up to a 

normalization constant. 

4.4.5.2. Complex Morlet wavelets: cmorl 

A complex Morlet wavelet is defined by: 

( )

2

21
c

b

x
i f x f

b

x e e
f

πψ
π

−
=  

and depends on two parameters: bf  
is a window parameter and cf  is the central 

frequency of the wavelet. Here, in Figure 4.15, are the real and imaginary parts, the 
module and the angle of the Morlet wavelet for 1.5bf =  and 1cf = . 

These functions only roughly verify the admissibility condition and are therefore 
not wavelets in the strict sense of the definition. Nevertheless, they are classical and 
commonly used. 
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Figure 4.15. The complex Morlet wavelet: cmor  

associated with 1.5bf = and 1cf =  

4.4.5.3. Complex frequency B-spline wavelets: fbsp 

A complex frequency B-spline wavelet is defined by: 

2
sin

( ) c

m
b

b i f x

b

f x

f m
x e

f xm

m

π

π

ψ π

⎛ ⎛ ⎞⎞⎟⎟⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜

 

and depends on three parameters: the order of the wavelet given by an integer 
1m > , bf  is a window parameter and cf  the central wavelet frequency. In Figure 

4.16 we find the real and imaginary parts, the modulus and the angle of the wavelet 
obtained for 2m = , 1bf =  and 0.5cf = . 

Let us mention, finally, that if we sequence 1m = , we obtain a wavelets family 
with two parameters, called Shannon wavelets. 
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We have introduced the usual wavelet families and outlined how a number of 
them are constructed, in particular, orthogonal wavelets. These are, in general, 
implicitly defined by filters, but do not have an analytical expression. Nonetheless, 
we can visualize them or, more exactly, visualize excellent approximations using the 
cascade algorithm. 

 

Figure 4.16. The complex frequency B-spline wavelet: fbsp  

associated with 2m = , 1bf =  and 0.5cf =  

4.5. Cascade algorithm 

In this section we present the cascade algorithm that, starting only from the 
associated filters ϕ and ψ , makes it possible to calculate and thus to trace the 
scaling function and the wavelet stemming from a multi-resolution analysis.  

 
This algorithm consists of repeatedly applying the reconstruction phase of the 

Mallat algorithm, starting with a sequence that is 0 except for one coefficient. We 
start with the justification for the algorithm. The links between the cascade 
algorithm and the reconstruction phase of the Mallat algorithm are established. We 
then illustrate the behavior of the algorithm by visualizing the successive 
approximations of the scaling function and the wavelets associated with the db2 
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filter. In fact, the algorithm approaches the values of the two functions at the dyadic 
points of { . For this reason we eventually provide a result of approximation and 
convergence. 

4.5.1. The algorithm and its justification 

Let us place ourselves in the context of Chapter 3. Spaces jV  and jW
 
are 

provided with orthonormal bases { },j k k
ϕ

∈¦
 and { },j k k

ψ
∈¦

 where ϕ  and ψ  

indicate the scaling function and the wavelet. For a function 2f L∈  the orthogonal 

projections of f  on jV  and jW , respectively noted 
j

j
VA P f=  and 

j

j
WD P f= , 

are given by the relations below: 

,  jj
p j p

p

A a ϕ
∈

= ∑
¦

with ( ) ( )2 2, ,, ,j j
p j p j pL L

a A fϕ ϕ= =
 

 

,
jj
p j p

p

D d ψ
∈

= ∑
¦  

with ( ) ( )2 2, ,, ,j j
p j p j pL L

d D fψ ψ= =  

The algorithm is based on the following observation. The scaling function ϕ  is 

the single function 2f L∈  that satisfies: 

( ) 20,, p L
f ϕ

 
 if  0 p =

 
   and for any 

*,   ∈ ¦p p
  

( ) 2

*
,, 0 , p , 0

L

j p L
f jψ = ∀ ∈ ∀ ≤¦

 

in other words: 0 0
0 1 , 0 , 0pa a p= = ∀ ≠    and   0 , , 0j

pd p j− = ∀ ∀ ≥ . 
 

We thus have: 

0 1 , 0jV V V jϕ −−∈ ⊂ ⊂ ⊂ ⊂ ∀ >A A    and  , 0jW jϕ −⊥ ∀ ≥  
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or, equivalently: 

0 1 , 0jA A A jϕ − −= = = = = ∀ >A A    and 0 , 0jD j− = ∀ ≥ . 

Consequently, by using successively 0V , 1V− ,… , jV− , etc., we obtain: 

0 1
0, ,1,

j
p p pp j pp

p p p

a a aϕ ϕ ϕ ϕ−−
−−

∈ ∈ ∈
= = = = =∑ ∑ ∑

¦ ¦ ¦
A A  

In addition, for a fixed 0J >  the reconstruction phase of the Mallat algorithm 
makes it possible to calculate the components of JA−  using those of 1JA− +  and 

1JD− +  (see relation [3.15] in Chapter 3): 

[ ] [ ]1 1
2 2

J J J
m p pm p m p

p p

a a LoR d HiR− − + − +
− −

∈ ∈
= +∑ ∑

¦ ¦
 

where LoR  and HiR  are the reconstruction filters associated with the scaling 

function and the wavelet. Since the detail 1JD− +  is equal to zero: 

[ ]1
2

J J
m p m p

p

a a LoR− − +
−

∈
= ∑

¦
 

The process is iterated until level 0, using the fact that all the details are zero. 

Ultimately, starting from the sequence { }0 0
0 1 , 0 , 0pa a p= = ∀ ≠  and 

applying the reconstruction phase of the Mallat algorithm with zero components for 

details J  times, we calculate the sequence { }J
m

m
a− . As we shall see in the last 

section, the sequence { }22
J J

m
m

a−  is then an “approximation” of the sequence of 

values ( ){ }2 J

m
mϕ − . For instance, if ϕ  is Hölderian of the order α over { , the 

approximation error is less than 2 JD α− . This means that very good precision is 

reached after few iterations, say 10J = , as in the example in the following section. 
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Similarly, we construct an approximation of the wavelet ψ . Indeed, the function 
ψ  is the single function 2f L∈  that verifies: 

( ) ( )2 20, 0, , = 1  if   = 0   and   , = 0  if    0 
L L

≠p pf ψ p f ψ p

 

( ) 2

*
,, 0 , p , 0

L

j p L
f jψ = ∀ ∈ ∀ <¦

 

consequently: 

0 0
0 1 , 0 , 0pd d p= = ∀ ≠    and   0 , , 0j

pd p j− = ∀ ∀ >  

0 1 , 0jW V V jψ −−∈ ⊂ ⊂ ⊂ ⊂ ∀ >A A    and   , 0jW jψ −⊥ ∀ >  

0 1 , 0jD A A jψ − −= = = = = ∀ >A A    and   0 , 0jD j− = ∀ >  

The construction of the approximation of ψ is then similar to that of ϕ ; only the 

initialization changes: we start here with the sequence 

{ }0 0
0 1 , 0 , 0pd d p= = ∀ ≠ . 

4.5.2. An application  

Let us apply the algorithm to calculate successive approximations of the scaling 
function and wavelet associated with the filter db2 that has a length of 4. In Figure 
4.17, at the top, we present the approximations of the scaling function ϕ  and at the 
bottom, those of the wavelet after 2, 3, 4 and 10 iterations of the cascade algorithm. 
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Figure 4.17. Approximations of the scaling function ϕ and the wavelet ψ  
associated with the db2 filter after 2, 3, 4 and 10 iterations of the cascade algorithm 

4.5.3. Quality of the approximation 

The cascade algorithm is based on the following theoretical approximation (or 
regularization) result. 

Let us consider a function ϕ  in ( ) ( )1 2L L∩{ { , whose integral over {  is 
equal to 1. To simplify, we can also suppose that ϕ  is real and has a compact 
support.  

For a function f  of {  to { , we define, at least formally, a “regularizing” 
sequence by: 

( ) ( ) ( ) ( ) ( )( )2 22 2 2 2 2
j jj j j

j x f x y y dy f z z x dzθ ϕ ϕ⎡ ⎤= + = −⎣ ⎦∫ ∫
{ {

, j ∈ ’  

The convergence of the sequence { }jθ  to f  depends on the properties of f . In 

particular, we have the following results: 

− if ( )2f L∈ { , then jθ  tends to f  in the space 2L . Moreover, if f  is 

continuous at the point 0x , then ( )0j xθ  tends to ( )0f x ; 

− if ( )0f C∈ { , then for any 0x  of { , ( )0j xθ  tends to ( )0f x ; 

− if f  is uniformly continuous over { , then jθ  tends to f uniformly over { ; 
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− if f  is a Holder function of order α over { , i.e., if for any pair of real ( ),x y  

we have ( ) ( )f x f y C x y α− ≤ − , then ( ) ( ) 2 j
jf x x D αθ −− ≤  for all x  

in { . 

One uses the previous result setting f ϕ=  and considers the dyadic points of 

{ , that is, points of the form 2 , ,Nx K K N−= ∈ ∈¦ ’ . 

If x is a point of continuity of ϕ , then: 

( ) ( ) ( )

( )

2 2

2
2, 2

2 lim 2 2 2 2

lim 2 ,

j j

j

j N

N j j N

j

j Kj L

K f z z K dzϕ ϕ

ϕ ϕ −

− −
→+∞

−→+∞

⎡ ⎤= −⎢ ⎥⎣ ⎦

=

∫
{  

where ( ) ( )2
, 2 2

j j
j k t t kϕ ϕ− −= − . 

If ϕ  is an Holder order α over { , there also exists an estimate of the 

approximation quality is provided by: 

( ) ( )2
2, 2

2 2 , 2
j

j N
N j

j K L
K D αϕ ϕ ϕ −

− −
−− ≤  

The cascade algorithm allows the sample calculation of the terms of the form of 

( ) 2,, j m L
ϕ ϕ− , provided that m is an integer. Let us note that, once j N≥ , the 

number 2j NK − is an integer. We have a similar result for ψ . 



Chapter 5 

Finding and Designing a Wavelet 

5.1. Introduction 

It is possible that for certain applications we do not find a suitable wavelet 
among the known options. It is then natural to try to produce a new wavelet adapted 
to the specific problem being treated. In this chapter we are interested in two wavelet 
construction processes: one is useful for continuous analysis and the other is linked 
to the discrete case. 

In the first part of this chapter we consider the construction of wavelets usable 
for continuous analysis. This problem does not present great difficulty as the 
requirements to obtain such wavelets are relatively limited. We proceed in the 
following manner: starting from a pattern which, in general, is not a wavelet, we 
seek the wavelet nearest to the given form in the least squares sense. The usefulness 
of the construction process is demonstrated when this is applied to a detection 
problem. The task consists of employing the adapted wavelet to identify in a signal 
the patterns stemming from the basic form via translation and dilation. 

In the second part of this chapter we tackle the construction of wavelets for 
discrete analyses, which is, in turn, more delicate. Until a few years ago, it was still 
only a subject for specialist discussion. Recently, the lifting method developed by 
Sweldens (see [SWE 98]) has made this task easier. It makes it possible to construct 
an infinite number of biorthogonal wavelet bases starting from a given biorthogonal 
wavelet base. 
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In fact, the discussion of this issue is more naturally organized starting from the 
concept of two-channel filter banks having the property of perfect reconstruction. 
Indeed, lifting enables the construction of an infinite number of filters on the basis 
of such a filter bank. The question of knowing the conditions under which an 
obtained filter bank is associated with a biorthogonal wavelet base deserves to be 
separated from the description of lifting. 

Consequently, we tackle the three topics outlined above: 

– we begin with filter banks. First of all, we set the rule that a two-channel filter 
bank has the property of perfect reconstruction and we set the construction 
algorithms for such filters; 

– we then introduce lifting which make it possible to generate an infinite number 
of such filter banks and to parameterize them;  

– finally, we characterize filter banks associated with biorthogonal wavelet 
bases. A number of examples are provided at the end of this chapter. 

5.2. Construction of wavelets for continuous analysis 

In this section, we first present the construction of a new wavelet and then this 
method is applied to a detection problem. 

5.2.1. Construction of a new wavelet 

5.2.1.1. The admissibility condition 

The continuous wavelet transform of a function f  (see Chapter 2) is calculated 

using the formula: 

( ) ( ) ( ) 2, ,( , ) ,f a b a b L
C a b f t t dt fψ ψ= =∫{  

with: 

( ) ( ),

1
a b

t b
t

a a
ψ ψ

−
= , b ∈ {  and a +∗∈ {   
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For f  in 2L  the existence of the coefficients ( , )fC a b  is ensured once ψ  is in 
2L . Nonetheless, in order to enable the inversion of the transformation, it is 

necessary to choose functions ψ  belonging to 1 2L L∩  and satisfying the following 
admissibility condition relating to the Fourier transform ψ̂  of ψ : 

( )

2 2
0

0

ˆ ˆ( ) ( )
-CNS ad d d

ψ ω ψ ω
ω ω

ω ω
+∞

−∞
= < +∞∫ ∫  [5.1] 

These hypotheses about the ψ  function guarantee the possibility of calculating 
the inverse transform. We then say that ψ  is an admissible wavelet. 

To verify that a real function is a wavelet we use the following simpler sufficient 
admissibility condition: 

( )-CS ad  ψ  real, 1 2L Lψ ∈ ∩ , ( )t t dtψ < +∞∫R  and ( ) 0t dtψ =∫{  

The condition ( )-CS ad  makes it possible to affirm that the Fourier transform 
1ˆ Cψ ∈  with ( )ˆ 0 0ψ = ; consequently, the integrals of the condition ( )-CNS ad  

exist. 

5.2.1.2. Simple examples of admissible wavelets 

The admissibility condition and the condition ( )-CS ad  are very weak and it is 
easy to construct wavelets usable for continuous analysis. Almost any function 
integrating to zero is appropriate, provided that it also verifies some elementary 
properties. 

Let us cite some simple examples of ψ  functions verifying the condition 
( )-CS ad . 

If f  is Gaussian, ( )
2Btf t Ae−=  with A ∈ {  and 0B > , then all its 

derivatives satisfy the sufficient admissibility condition. Indeed, for all n ∗∈ ’  

there is a polynomial nP , such that ( ) ( ) ( )
2n Bt

nf t P t e−= ; therefore, 
( ) 1 2nf L L∈ ∩ , ( ) 1ntf L∈  and ( ) ( ) ( )1 0n nf t dt f

+∞−
−∞

⎡ ⎤= =⎣ ⎦∫{ . 

More generally, if f  belongs to the set of rapidly decreasing functions, all the 
derivatives of f  satisfy the condition. 
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Figure 5.1. Gaussian functions: 1st derivative on the left and 8th derivative on the right 

If ( ) ( )1 2f L L+ +∈ ∩{ {  with ( )1tf L +∈ { , by extending f  to −{  in an 
odd fashion we also obtain a function satisfying the sufficient admissibility 
condition. We can, in particular, choose a continuous or piecewise continuous 
function f  over +{  with a compact support, as in the example in Figure 5.2. 

       

Figure 5.2. On the left, a function f defined over +{ . 

On the right, the wavelet ψ  obtained by extension of f 

The construction of wavelets with compact support and arbitrary regularity is 
easy. Let us consider, for example, the following family with a parametern ∈ ’ : 

( ) ( )[ ] ( ) [ ] ( )
1

-1,1sgn sin 1Inn
nf t t t tπ+=  

The sufficient admissibility condition is satisfied. Moreover, ( )1n
nf C −∈ {  

and it is zero outside of the segment [ ]1,1− . 



Finding and Designing a Wavelet     119 

      

Figure 5.3. Function 3f  on the left and function 8f  on the right 

In order to extend a support equal to [ ],a b  we can, for example, consider the 
family { }ng  defined by ( ) ( ) ( )( )( )1

2
1 1n ng t f b t a t= + + −  for n ∈ ’ , or 

construct an adapted polynomial function. 

5.2.1.3. Construction of wavelets approaching a pattern 

On the basis of the given function f  with compact support and finite energy we 
may consider the construction of a wavelet usable for continuous analysis, 
approximating this function as well as possible, in the least squares sense. Various 
construction methods are possible. 

First method 

Let us denote by [ ],a b  an interval containing the support of f  and take a family 

{ } 1
N

i i
F ρ ==  of N  functions, continuous or piecewise continuous on [ ],a b . Let us 

suppose that the family F  is linearly independent in ( )2 ,L a b . 

We want to construct the approximation in the least squares sense of the function 

f  using a finite linear combination of the form 
1

N

i i
i

ψ α ρ
=

= ∑ . Given the 

hypotheses on f  and F , the approximation ψ  clearly satisfies the two conditions 
1 2L Lψ ∈ ∩  and 1t Lψ ∈ . The function ψ  must integrate to zero (we can foresee 

having other vanishing moments). This condition reduces to the following linear 

constraint: 
1

0
N

i i
i

Rα
=

=∑  where ( )
b

i ia
R t dtρ= ∫ .  
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The vector { } 1
N

i i
α α ==  and, consequently, the function 

1

N

i i
i

ψ α ρ
=

= ∑  are 

obtained by solving a linear system. More precisely, by noting: 

– G  the Gram matrix ( )xN N  defined by ( ) ( )
b

i j i ja
G t t dtρ ρ= ∫ ; 

– M  the matrix of constraints ( )1xN  with i iM R= ; 

– B  the vector ( )x1N  defined by ( ) ( )
b

i ia
B f t t dtρ= ∫ ; 

the vector α  and the Lagrange multiplier λ  associated with the constraint are the 
solutions of the linear system: 

00

t BG M

M

α

λ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎟⎜ ⎟⎜⎟⎜⎟⎜ ⎟⎟ ⎜=⎜⎟ ⎟⎜ ⎟ ⎜⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜⎜⎟⎟⎝ ⎠⎜ ⎝ ⎠⎝ ⎠
 

When the family F  is not orthogonal to the set of constants, M  becomes the 
matrix of a surjective application of N{  in {  and the solution is therefore unique. 

EXAMPLE 5.1. 

In this example we construct two approximating wavelets differing by the choice 
of the F  functions family. Let us consider the function f  with the support [ ]1,1− , 
defined by: 

( ) [ ] ( ) [ ] ( ){ } ( )
1 20,1 -1,01I 1I sinf t C t C t tπ= +  

Let us note that ( )
( )1 22 C C

f t dt
π
−

=∫
{

 and thus ( ) 0f t dt ≠∫
{

, if 

1 2C C≠ . 

Let us take, for example, 1 1C =  and 1
2 2

C = . 

The wavelet represented in the left graph in Figure 5.4 is obtained using the 
family of polynomials of degree 2≤  over the interval [ ]1,1−  as family F . By 
employing as family F  the same family of polynomials but on a larger interval, 
here [ ]2,1− , we obtain the wavelet of the right graph. 
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Of course, the result does not seem very satisfactory. To improve it, it is 
necessary to increase the degree of the F  polynomials and to add continuity 
constraints to the ψ  function. Let us examine that in the next section.  

 

  

Figure 5.4. Approximation by polynomials of degree 2≤ : 

on the left on [ ]1,1− , on the right on [ ]2,1−  

Second method 

Since the family F  consists of continuous functions on [ ],a b  we may seek a 
function ψ continuous on the real line { . That amounts to imposing two additional 

linear constraints ( ) 0aψ =  and ( ) 0bψ =  leading to ( )

1
0

N

i i
i

aα ρ
=

=∑  and 

( )
1

0
N

i i
i

bα ρ
=

=∑ . 

The constraints matrix M  becomes a ( )3xN  matrix defined by: 

1, iiM R= , ( )
2, iiM aρ=  and ( )3, iiM bρ= , 1, ,i N∀ = A  

EXAMPLE 5.2. 

Let us again take the function f  from the previous example and use the 
polynomials of degree 3≤  on [ ]1,1−  to construct a wavelet ψ  that would be the 
approximation of f  in the least squares sense. We obtain the approximations 
represented in Figure 5.5. 

 

f 

f

ψ
 ψ  
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Figure 5.5. Approximation by  polynomials of degree 3≤  on [ ]1,1− : on the left 
unconstrained, on the right with the constraints ( )1 0ψ − =  and ( )1 0ψ =  

Third method 

We can use a more direct construction method. We seek the best approximation 
of f  in the least squares sense, within the space of functions orthogonal to 
constants. On the basis of 2f L∈  with ( ) [ ]supp ,f a b⊂ , the following ψ  function 
approximates f  and verifies the admissibility condition: 

( ) [ ],1I
b

a ba
f fψ = − ∫  

If f  is continuous over the interval [ ],a b , satisfying the two additional 
constraints ( ) 0aψ =  and ( ) 0bψ =  leads to seeking a wavelet ψ  of the form: 

( ) [ ]
2

,1I a bf t tψ α β γ= − + +  

The coefficients α, β and γ  are calculated solving the linear system:  

( )

( )

3 3 2 2

2

2

3 2

1

1

b

a

b a b a
b a f

a a f a

f bb b

α

β
γ

⎛ ⎞− − ⎟⎜ ⎟− ⎛ ⎞⎜ ⎟⎛ ⎞ ⎟⎜ ⎜⎟ ⎟ ⎟⎜⎜ ⎜⎟ ⎟ ⎟⎜⎜ ⎜⎟ ⎟ ⎟⎜⎜ ⎜⎟ ⎟ ⎟⎜⎟⎜ = ⎜⎟ ⎟⎟⎜⎜ ⎜⎟ ⎟⎟⎜⎜ ⎟ ⎟⎜⎟ ⎟⎜ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜⎜⎜ ⎜⎝ ⎠⎟ ⎟⎟ ⎟⎜⎜ ⎜⎝ ⎠⎟ ⎟⎜ ⎟⎟⎜⎜ ⎟⎝ ⎠⎟⎜

∫
 

f  f

ψ  ψ  
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Fourth method 

In practice and for numerical calculations we generally know only one sampling 
of the function f over the [ ],a b  interval. We have a finite set of values 

( ){ }
1, ,

,k k k K
t y = A  such that: 

ka t b≤ ≤  and ( )k ky f t≈ .  

As above, we consider a family { } 1
N

i i
F ρ ==  linearly independent in ( )2 ,L a b , 

and we denote by V  the span vector space of F. Formulated for this finite set of 

pairs, the problem amounts to seeking { } 1
N

i i
α α ==  in N{  and thus 

1

N

i i
i

ψ α ρ
=

= ∑
 
such that: 

2 2

= =
[ ( ) ] [ ( ) ] such that ( ) 0

K

k k β k k β
βk  1   1

ψ   υ     Min
N

K
b

a
k

t y t y t dtυ
∈

⎧ ⎫
− = − =⎨ ⎬

⎩ ⎭
∑ ∑ ∫

{
 

where for β  in N{ , 
1

N

i i
i

vβ β ρ
=

= ∑ . 

It is thus a problem of minimization in the least squares sense with a constraint, a 
problem similar to the one considered previously. The vector α  and the Lagrange 
multiplier λ  associated with the constraint are obtained by solving the linear 
system: 

00

t BG M

M

α

λ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎟⎜ ⎟⎜⎟⎜⎟⎜ ⎟⎟ ⎜=⎜⎟ ⎟⎜ ⎟ ⎜⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜⎜⎟⎟⎝ ⎠⎜ ⎝ ⎠⎝ ⎠
 with G , M and B  defined by: 

( ) ( )
1

K

i j i jk k
k

G t tρ ρ
=

= ∑ ,   ( )
b

i ia
M t dtρ= ∫ ,   ( )

1

K

i ik k
k

B y tρ
=

= ∑ . 
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5.2.2. Application to pattern detection 

In this section we propose considering the following detection problem. We take 

S signals consisting of a linear combination of dilations-translations ( )t b
f

a

−
 of a 

basic form f  and, possibly, also a noise and a “low frequency” function.  

In this context, only ( )S t  and ( )f t  are known. We have to identify the number 

of patterns 
1

K
k

k k

t b
f

a =

⎧ ⎛ ⎞⎫−⎪ ⎪⎪ ⎪⎟⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭
and the value of the pairs (scale, position) ( ){ },k k k

a b . 

The following process is used: 

– find an acceptable wavelet ψ  approximating the form f  using one of the 
methods presented in the previous section; 

– perform an analysis of S using the adapted wavelet ψ ; 

– select ( ),k ka b  seeking the maxima of the coefficients’ surface. 

In this section we will find three increasingly complex examples, for which we 
demonstrate that: 

– the above process performs well; 

– the use of another wavelet systematically leads to worse results. 

EXAMPLE 5.3. 

Let us consider the basic form already encountered in example 5.1, i.e. the 
function f  defined by: 

( ) [ ] ( ) [ ] ( ){ } ( )
1 20,1 -1,01I 1I sinf t C t C t tπ= +  

with 1 1C =  and 2 0.9C = . Since ( )
( )2

1 2 0.0637
C C

f t dt π

−
=∫

{
0 0≠ , this 

form is not a wavelet. 

We construct a signal S  containing two specimens dilated from this basic form 
f  and depicted in Figure 5.6. 
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Figure 5.6. Constructed signal: ( ) ( ) ( )2t tS t f f− −= +20 48

8 4
  

With the detection technique we hope to find two pieces of information for each 
dilated form: 

– scale a  (8 and 4 respectively); 

– position b  (20 and 48 respectively). 

We analyze the signal S  using one of the admissible wavelets approximating the 
basic f  form constructed in example 5.1, i.e. we calculate its coefficients ( ),sC a b . 
We compare the results obtained with this adapted wavelet to those associated with 
the db1 wavelet. We obtain time-scale graphs seen in Figures 5.7 and 5.8. 

In each of the two figures we find three graphs. On the left there are the contour 
plot of the wavelet coefficients ( ),sC a b  with positions b  along the x-axis and 
scales a  along the y-axis. On the right are the two zooms on the two pairs 
( ) ( ), 8,20a b =  and ( )4,48 . 

The two analyses are similar: the position of the two dilated forms is detected 
well. Nevertheless, the adapted wavelet is more effective in locating the two scales 8 
and 4: the y-coordinates of local maxima identify these scales better when the 
approximating wavelet is used. Although relevant, since the wavelet slightly 
resembles the sought form, the analysis with db1 indicates a slight shift towards the 
bottom (in scale) of these maxima. 

Let us now test a more regular wavelet: sym4 (see Figure 5.9). This analysis 
proves much less fruitful. The position and the scale of the two dilated forms are not 
detected well. This phenomenon is due to the size of the wavelet support. More 
generally, it seems that db1 is the best amongst the wavelets not adapted to f . 
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Figure 5.7. On the left, contour plot of the coefficients of the signal analyzed with the wavelet 

approximating the form. On the right, zooms on the two detected pairs (scale, position) 

 

Figure 5.8. On the left, contour plot of the coefficients of the signal analyzed with the db1 

wavelet. On the right, zooms on the two detected pairs (scale, position) 
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Figure 5.9. Contour plot of the coefficients of the signal analyzed with the sym4 wavelet 

EXAMPLE 5.4. 

Let us consider a second example, where we will partially superimpose two 
translated and dilated versions of another basic form f , defined by: 

( ) [ ] ( ) [ ] ( ){ } ( ) [ ] ( ) ( )1 20,1 -1,0 -1,1

1
1I 1I sin 1I sin 4

4
f t C t C t t t tπ π= + +  

   

Figure 5.10. Pattern f  and adapted wavelet ψ  obtained  

using  polynomials of  degree  6≤ on [ ]1,1−  

f  

ψ  
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with 1 1C =  and 2 0.9C = , and, thus, also here ( )
( )2

1 2 0.0637
C C

f t dt π

−
=∫

{
0 . 

 
We construct an admissible wavelet approximating f  using polynomials of  

degree  6≤  on [–1,1] (see Figure 5.10). 

We construct a signal S  containing two dilated and partially superimposed 
specimens of this basic form. 

 

Figure 5.11. Constructed signal: ( ) ( ) ( )2t T t TS t f f− −= +
32 8

, with T = 48 

We successively analyze signal S  with the adapted wavelet and the db1 wavelet. 
(Figures 5.12 and 5.13, respectively). In the two analyses the joint position of the 
two dilated forms is clearly detected. Nonetheless, the adapted wavelet is more 
accurate in locating the two scales 32 and 8. Compared to the preceding one, the 
analysis with db1 presents a considerable downwards shift of these maxima. Let us 
stress that the use of a wavelet with larger support is not efficient for the detection of 
the position and scale of every form. 
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Figure 5.12. Contour plot of the coefficients of the signal analyzed with the adapted wavelet 

(on the right is the zoom on the significant part) 

 

Figure 5.13. Contour plot of the coefficients of the signal analyzed with  

the db1 wavelet (on the right is the zoom on the significant part) 

EXAMPLE 5.5. 

In order to illustrate the stability of the behavior highlighted above, let us 
consider a basic signal obtained using the function f  from example 5.2 and add a 
“triangular” signal T and a Gaussian white noise B with large variance. 
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Figure 5.14. Constructed signal: ( ) ( ) ( )2 ( ) ( )t tS t f f T t B t− −= + + +20 48

8 4
  

Let us analyze the signal S  with the adapted wavelet (it is the approximating 
wavelet from example 5.2) and with the db1 wavelet. 

 

Figure 5.15. Signal analysis with the adapted wavelet 



Finding and Designing a Wavelet     131 

 

Figure 5.16. Signal analysis with the db1 wavelet 

Despite the presence of noise, the wavelet adapted to the form remains more 
efficient in locating the two characteristic scales 8 and 4. A wavelet that is more 
regular than db1 (for example, dbN or symN) smoothes out the effect of the noise. 
However, the scales of the two forms are still badly detected. 

5.3. Construction of wavelets for discrete analysis 

The rest of this chapter is dedicated to the construction of wavelets for discrete 
analysis. First of all, we widen the framework passing by the two-channel filter 
banks, whose properties are examined. In particular, we determine the conditions 
enabling perfect reconstruction. This classical signal processing approach [EST 77] 
leads to what is called quadrature mirror filters (QMF) [MIN 85] or also conjugated 
mirror filters [SMI 86], which are also often referred to as QMF.  

A perfect reconstruction filter bank is known as “biorthogonal” and the 
associated filters as biorthogonal. Lightly constraining conditions make it possible to 
obtain such filter banks without too much difficulty. With the “lifting” method it is 
then possible to construct an infinite number thereof starting from a biorthogonal 
bank. Moreover, thanks to the technique known as “polyphase”, we show [DAU 97] 
that all the biorthogonal transformations can be decomposed into elementary lifting 
steps. 
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Finally, the link with wavelets is the subject of the last section. By starting from 
a biorthogonal filter bank with some additional conditions we can construct 
biorthogonal wavelet bases. In particular, on the basis of a biorthogonal filter bank 
stemming from wavelets, we can construct an infinite number of filter banks of the 
same type, among which it is possible to distinguish those associated with 
biorthogonal wavelets. 

5.3.1. Filter banks 

5.3.1.1. From the Mallat algorithm to filter banks 

Within the framework of orthogonal wavelets the decomposition-reconstruction 
algorithm uses operations of filtering by convolution, down-sampling and up-
sampling. This algorithm uses four filters obtained from a single filter associated 
with the scaling function ϕ  by the two-scale equation (see Chapter 3). Two filters 
are used for the decomposition and two for the reconstruction.  

One of the algorithm’s properties is invertibility: a decomposition followed by a 
reconstruction provides again the original signal. Moreover, various properties link 
the four filters and the ( ),ϕ ψ  pair. 

Let us forget for the moment the link with wavelet bases and consider the more 
general context of two-channel filter banks, in order to determine the conditions 
ensuring invertibility. Let us consider the two-channel filter bank represented in 
Figure 5.17: the top part represents one channel and the bottom part the other. 

 

Figure 5.17. Two-channel filter bank 

Decomposition or analysis 

e  

2↓

ah  2↓

ag  

Reconstruction or synthesis 

2↑ sh  

2↑ sg  

s  
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The inputs and outputs are sequences indexed by ¦ . 

In each channel the input sequence e  is filtered using ah  (respectively ag ) and 
then decimated by 2↓ . This is the analysis part. In order to synthesize we start with 
two sequences, insert the zeros (operation noted 2↑ ), we filter using sh  and sg  
respectively and, finally, sum up to obtain the output sequence s . 

The main property necessary for a filter bank is the property of perfect 
reconstruction. After a decomposition followed by a reconstruction without any 
intermediate operation we want to obtain an output s  equal (possibly up to a close 
translation) to the value of input e . 

What are the relations that must link the four filters ah , sh , ag and sg  in order 

to satisfy this property? 

5.3.1.2. The perfect reconstruction condition 

Let us consider the filter bank in Figure 5.17, for the case where there is no 
intermediate step between decomposition and reconstruction. We may then represent 
it more concisely using the following figure. 

Figure 5.18. Two-channel filter bank (input-output view) 

A necessary and sufficient condition (NSC) linking the four filters ah , sh , ag  
and sg  to obtain a perfect reconstruction with a translation of d  time units is 

provided by the theorem [VET 86]1 where the z-transform of a sequence 

( )k k
s s ∈= ¦  is formally defined by ( ) ,k

k
k

S z s z z−

∈
= ∈∑

¦
} . 

 
 
 

                                   
1 See also [MAL 98], p. 260. 

e  ghs s s= +
 

[ ][ ]( ){ }2 2s ahs h h e= ∗ ↑ ↓ ∗

[ ][ ]( ){ }2 2g s as g g e= ∗ ↑ ↓ ∗
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THEOREM 5.1. (PERFECT RECONSTRUCTION)– let ah , ag , sh , sg  be the 

four bank filters of Figure 5.18. Let us note their respective z-transforms as aH , 

aG , sH  and sG . 

For a given d ∈ ¦  a NCS, such that for every input e  the corresponding output 

s  verifies ( )
ds T e= , where ( )( )d k dk

T e e −=  (i.e. the output s  is equal to the 

input e  delayed by d  time units), is: 

( ) ( ) ( ) ( ) 2 d
s a s aH z H z G z G z z−+ =

 
[5.2] 

and: 

( ) ( ) ( ) ( ) 0s a s aH z H z G z G z− + − =
 

[5.3] 

We speak then of a perfect reconstruction and, when 0d = , we have perfect 
reconstruction without translation: s e= . 

Ů 

Condition [5.3] is called the anti-aliasing condition. 

In the following section we present a simple method of constructing four filters 
ensuring the perfect reconstruction condition which is then illustrated using three 
examples. 

5.3.1.3. Construction of perfect reconstruction filter banks 

We can exploit the preceding result to determine the four z-transforms: aH , sH , 

aG  and sG . We seek to easily satisfy condition [5.3], so as to express relation [5.2] 
more simply. However, for the simplest choices of the additional constraint, the 
reconstruction is necessarily carried out with a translation. 

First of all, we will seek an immediate solution of equation [5.3]. Let Θ  be an 
unspecified function (in practice it is a monomial). If aH , sH , aG  and sG are 
selected so that: 

( ) ( ) ( )s aH z z G z= Θ −  and ( ) ( ) ( )s aG z z H z= −Θ −  [5.4] 
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then relation [5.3] is verified automatically. Using this in [5.2] we obtain just one 
equation to be satisfied, where there appear only two unknown factors, aH  and sH : 

( )
( ) ( ) ( ) ( ) 2 ,

( )
d

s a s a
z

H z H z H z H z z d
z

−Θ
− − − = ∈
Θ −

¦
 

[5.5] 

Relation [5.5] is simplified if we choose an even or odd Θ  function, which will 
be done later on. The pair ( ),a sH H  then verifies: 

( ) ( ) ( ) ( ) 2 ,d
s a s aH z H z H z H z z dσ −− − − = ∈ ¦

 
[5.6] 

with 1σ = +  if Θ  is even and 1σ = −  if Θ  is odd. 

In [STR 96] (p. 105-109) and articles by Sweldens, causal filters are privileged. 
Relation [5.4] with 1Θ =  is retained, i.e.: ( ) ( )s aH z G z= −

 
and ( ) ( )s aG z H z= − − . 

Relation [5.6] is then satisfied with 1σ = + . 

The pair ( ),a sG G  satisfies similar relations. 

If 1σ = + , the right-hand side of the equality [5.6] is an odd function of z . 
This imposes an odd value ford . Reconstruction has to be performed with a 
translation, a “delay”. If 1σ = − , the first member of the equality is an even 
function of z  and, thus, d  necessarily has an even value. In this case we can take 

0d = , i.e. to obtain a reconstruction without translation. 

Regardless of the parity of Θ , posing s aHX H H=  and by writing 
d

HX z X= , the equality [5.6] leads to a very simple equation: 

( ) ( ) 2X z X z+ − =   [5.7] 

The first member of the above equality is an even function. If we seek X  as a 
Laurent series, then X  involves only odd powers of z , except for a constant term 
equal to 1. In other words, we have: 

(2 1)( ) 1 p
p

p

X z a z− +

∈
= + ∑

¦
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Under these conditions the search for the four filters aH , sH , aG  and sG  that 
verify the Vetterli reconstruction condition can be carried out using algorithm 5.1. 

Initial choices 

– Choose the sequence { }p p
a ∈¦  and write (2 1)( ) 1 p

p
p

X z a z− +

∈
= + ∑

¦
 

– Choose d ∈ ¦  and write ( ) ( ) d
HX z X z z−=

 

 

Step 1: Determination of aH  and sH  

– Factorize HX  in the form of s aHX H H=  

Step 22: Determination of aG  and sG  

– If d is odd, choose an even Θ  and take 1σ = + ; if d is even, choose an odd 

Θ  and take 1σ = −  

– Calculate: 
( )

( )
( )

s
a

H z
G z

z
σ

−
=

Θ
 and ( ) ( ) ( )s aG z z H z= −Θ −   

Algorithm 5.1. Construction algorithm 

This process makes it possible to construct the four filters choosing X , and thus 

HX , almost arbitrarily. Then, by factorizing 
HX  we determine the two filters of 

the same channel ( ah , sh ). Afterwards the two filters of the other channel are 
calculated ( ag , sg ). Naturally, since the pairs ( ah , sh ) and ( ag , sg ) play 
symmetrical roles, we can calculate the second pair first. 

For the choice of Θ  we can, for example, take functions like: ( ) pz zεΘ = , 
where 1ε = ±  and 2p m=  or 2 1p m= +  with m ∈ ¦ . 

NOTE 5.1.– it is obviously simpler to start directly from a factorization 

s aHX H H= . However, it requires that all the product terms have the same parity, 
except for one whose coefficient must be equal to 1. 

On the other hand, it is also possible to formulate the problem by first seeking the 
two analysis filters, i.e. the pair ( ah , ag ) and then the two synthesis filters ( sh , sg ). 

                                   
2 This step explains why we need non-causal filters if we want zero delay. The choice d = 0 
implies that one of the four filters has a z-transform, which contains positive and negative 
powers and is therefore non-causal. Conversely, if we require causal filters, the delay cannot 
be zero. 
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Lastly, if we seek finite impulse response filters, the functions aH , sH , aG  and 

sG  are necessarily Laurent polynomials and Θ  is a monomial. 
Ů 

5.3.1.4. Examples of perfect reconstruction filter banks 

In this section we present three examples of perfect reconstruction filter banks. 

First of all, we take a look at the “lazy wavelet”, which is not a wavelet in the 
traditional sense of the term. It leads to the simplest possible perfect reconstruction 
filter bank: “it does not do anything”. It is, in particular, the ideal candidate to 
initialize a lifting process (see section 5.3.2.1). 

EXAMPLE 5.6. (THE “LAZY WAVELET”) 

Let us introduce the following notation: for p ∈ ¦ , ( )pδ  stands for the sequence 

defined by ( ) 1p
pδ =  and ( ) 0p

kδ =  for k p≠ . The sequence ( )0δ  is the element 

neutral for the convolution and, more generally, for p ∈ ¦ , ( ) ( )p
pb a T aδ= ∗ = , 

i.e. k k pb a −= . 

Let us take ( ) 1X z = , 0d =  and ( )z zΘ = − , which leads to 
( ) ( ) 1HX z X z= = . We can factorize HX  in the form ( ) 1aH z =  and 

( ) 1sH z = ; we obtain 1( )aG z z−=  and ( )sG z z= . Thus: 

( )0
ah δ= , ( )0

sh δ= , ( )1
ag δ=  and ( )1

sg δ −=  

The convolutions by ah  and sh  simply correspond to the identity. The filters ag  
and sg  carry out translations of 1 and ( 1)−  respectively. How, then, does the filter 
bank operate? 

Since [ ][ ]( ){ }2 2s ahs h h e= ∗ ↑ ↓ ∗  and [ ][ ]( ){ }2 2g s as g g e= ∗ ↑ ↓ ∗ , 
the analysis part separates the components with an even index from those with an 
odd index, then performs a translation by 1 to the right for the components with an 
odd index. According to Figure 5.17 it is illustrated by: 

{ }
{ } [ ] { }
{ } [ ] { }

1

2
2

2 11 2

Id
pk k p

k k

pk kT p

e e

e e
e e

↓
∈ ∈

∈
−− ∈ ↓ ∈

⎯⎯⎯→ ⎯⎯⎯→
= →

⎯⎯⎯→ ⎯⎯⎯→

¦ ¦
¦

¦ ¦  
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The synthesis part inserts zeros, translates the odd index components by a step of 
1 to the left and then calculates the sum: 

{ } [ ] { } { }

{ } [ ] { } { }
1

2
0 02

2 1 1 1 12

, 0, , 0, , 0, , 0,

, 0, , 0, , , 0, ,

Id
p p

p Tp

e e e

e
e e e e

−

↑
∈ ⊕

− − −↑∈

⎯⎯⎯→ ⎯⎯⎯→
⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

A A A A
¦

A A A A
¦

 

Thus, we find the original sequence. 

EXAMPLE 5.7. (“HAAR FILTERS”) 

The second example deals with the simplest orthogonal wavelet: the Haar 
wavelet. A direct application of the preceding algorithm makes it possible to build 
the filters associated with this wavelet, but also other filters ensuring perfect 
reconstruction but not leading to a wavelet. 

Let us take ( ) ( )1 1
2 2

2 11 1
2 2

( ) 2X z z z z z− −= + = + + , 0d =  and 

1( )z z−Θ = − . 

A first factorization of HX X=  is given by a sHX H H=  with: 

( )1
2

( ) 1aH z z= +   and  ( )11
2

( ) 1sH z z−= + . 

From it we deduce that: ( )1
2

( ) 1aG z z= − +  and ( )11
2

( ) 1sG z z−= − + . 

We recognize the z-transforms of the Haar filters: 

( ) ( )( )0 11
2ah δ δ −= +  , ( ) ( )( )0 11

2sh δ δ= +  

( ) ( )( )0 11
2ag δ δ −= − +  , ( ) ( )( )0 11

2sg δ δ= − +  

These filters are associated with the Haar scaling function and the Haar wavelet 
(see Chapter 4). 
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Another factorization, which does not lead to a wavelet in the classical sense of 
the term, is possible: 

1
2

( )aH z =  and ( )11
2

( ) 2sH z z z−= + +  

which yields ( )21
2

( ) 2 1aG z z z= − +  and 11
2

( )sG z z−= , and, consequently: 

( )01
2ah δ= , ( ) ( ) ( )( )1 0 11

2
2sh δ δ δ−= + +  

( ) ( ) ( )( )2 1 01
2

2ag δ δ δ− −= − + , ( )11
2sg δ=  

EXAMPLE 5.8. (LONGER FILTERS, THE BIOR2.2) 

This last example applies the construction technique using a longer X  filter and 
leads to several quadruplets with perfect reconstruction. One of them is associated 
with the pair of biorthogonal wavelets bior2.2 (see Chapter 4). 

Let us consider a symmetrical Laurent polynomial longer than those in the 
preceding examples: 

( )3 1 31
16

( ) 9 16 9X z z z z z− −= − + + + −  with 0d =  and 1( )z z−Θ = − . 

The polynomial X  is factorized in the form: 

( ) ( ) ( )( )21 1 121
( ) 1 1 1

16
X z z z z zα α− − −= + + − −  with 2 3α = + . 

Consequently, by distributing the zeros of the polynomial 3z X  in aH  and in 

sH  we can factorize HX X=
 
as a sHX H H=  in several ways. One of them, 

provided by factorization: 

( ) ( )1 2 1 2 31 2 2 6 2
( )

4 4

z z z z z z
X z

− − −+ + − + + + −
=  , 

leads to the bior2.2 wavelet. 
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5.3.2. Lifting 

5.3.2.1. The lifting method 

In this section we demonstrate that by using a quadruplet solution of the system 
[5.2] and [5.3], we can build an infinite number of other solutions through a method 
called “lifting” introduced by Sweldens ([SWE 98], see also [STR 96] p. 214). 

The technique is as follows. We start with an odd or even Θ  (thus, 1σ = ± ), 
with d ∈ ¦  and two pairs ( ),a sH H  and ( ),a sG G  that are solutions of [5.4]. Due 

to relation [5.6], these pairs are solutions of equation: 

( ) ( ) ( ) ( ) 2 d
s a s aF z F z F z F z zσ −− − − =  [5.8] 

where aF  and sF  are the unknown factors. 

The key to lifting is that on the basis of a pair ( ),a sF F , which is a solution of 

the previous equation, we can build an infinite number of other solution pairs. 
Indeed, let us fix sF  and take a function η . We can define 

( ) ( ) ( ) ( )N
a a sF z F z F z zη= + −  (the N  exponent stands for “new” and this 

convention applies to the rest of the chapter). When 1σ =  and η  is even, the pair 

( ),N
a sF F  is also the solution of [5.8]. We thus produce an infinite number of 

solutions parameterized by η . We have the same result for 1σ = −  and an odd η . 

If we only consider polynomial solutions, it suffices to take an unspecified 

Laurent polynomial P  and to take ( ) 2( )z P zη =  for 1σ =  or ( ) 2( )z zP zη =  

for 1σ = − . 

By symmetry, if we fix aF , all the solutions ( ), N
a sF F  of [5.8] are obtained in a 

similar way (this operation is sometimes called dual lifting). 

Theorem 5.2 synthesizes the above idea and provides a parameterization of the 
infinite number of polynomial quadruplets that solve the system [5.4] and [5.5] (and 
thus, also the system [5.2] and [5.3]) obtained by lifting starting from a quadruplet 
polynomial solution ( ), , ,a a s sH G H G . 
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THEOREM 5.2. (PARAMETRIZATION SETTING OF THE SOLUTIONS)3 

Primal lifting: let ( ), , ,a a s sH G H G  be a polynomial quadruplet verifying [5.4] 

and [5.5]. The set of solutions ( ), , ,N N
a a s sH G H G  of [5.4] and [5.5] is provided by: 

2

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N
a a a

N
s s s

H z H z G z S z

G z G z H z S z

= +

= −
 where S  is an unspecified Laurent polynomial. 

Dual lifting: let ( ), , ,a a s sH G H G  be a polynomial quadruplet verifying [5.4] 

and [5.5]. The set of quadruplets ( ), , ,N N
a a s sH G H G  solving [5.4] and [5.5] is 

yielded by: 

2

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N
s s s

N
a a a

H z H z G z T z

G z G z H z T z

= +

= −
 where T  is an unspecified Laurent polynomial. 

Ů 
Dual lifting is achieved by exchanging the roles of the “a ” and “s ” indices in 

the primal lifting. 

5.3.2.2. Lifting and the polyphase method 

Up to now we could construct an infinite number of quadruplets with perfect 
reconstruction using just one of them thanks to the above parametrization. In fact, 
the situation is simpler than it appears. On the basis of elementary quadruplets, for 
example of the “lazy wavelet” or the Haar filters (see examples 5.6 and 5.7) we can 
obtain an infinite number of solutions by using elementary lifting steps. To specify 
this result and to define the concept, a detour to introduce the polyphase method, 
which is interesting in itself, is necessary. We thus first describe it in this section and 
then examine its consequences for lifting. 

In the decomposition part of the filter bank schematized in Figure 5.19 we 
perform convolution, followed by decimation where only even index terms are 
preserved for each “branch”, also referred to as phase. The odd index terms are not 
used. We may wonder about the possibility of permuting the decimation and 
filtering so as to make calculation more efficient. It is the object of the polyphase 
method. 

                                   
3 The theorem can also be written using the Fourier transform or directly in the time domain: 
[STR 96] p. 216. 



142     Wavelets and their Applications 

 

Figure 5.19. Decomposition part of the filter bank 

Let us consider the calculation of u on the basis of the input sequence 

{ }k k
e e ∈= ¦ . The usual form is as follows: we have [ ]( )2 au h e= ↓ ∗ , but 

( ) [ ]a ak nk n
n

h e e h−
∈

∗ = ∑
¦

 and, thus: 

( ) [ ]2 2a ak nk k n
n

u h e e h−
∈

= ∗ = ∑
¦

 [5.9] 

The polyphase method consists simply of reformulating the preceding result by 
introducing two elementary sequences: the sequence of even index components and 
the sequence of odd index components both for the input and the filter. For a 
sequence { }k k

r r ∈= ¦  let us define the “even” and “odd” sub-sequences by 

{ }2nP n
r r ∈= ¦  and { }2 1nI n

r r + ∈
= ¦

4. On the basis of [5.9] the new expression 

becomes: 

[ ] [ ] [ ]

( ) [ ] ( )( ) [ ]

[ ] [ ]( )

( ) [ ]( )

2 2 12 2 2 2 (2 1)

2 2 12 2 1 1

, 1 ,

, ,1

a a an j jk k n k j k j
n j j

a aj jk j k j
j j

aP I k j a IPk j j j
j j

a aP IP Ik k

u e h e h e h

e h e h

e h e h

e h T e h

+− − − +
∈ ∈ ∈

+− − − +
∈ ∈

− −−
∈ ∈

= = +

= +

⎡ ⎤⎡ ⎤= + ⎢ ⎥⎣ ⎦ ⎣ ⎦

= ∗ + ∗

∑ ∑ ∑

∑ ∑

∑ ∑

¦ ¦ ¦

¦ ¦

¦ ¦

 

                                   
4 If R , 

PR  and IR  indicate the z-transforms of the sets r , Pr  and Ir  respectively, then: 

( ) ( ) ( )2 1 2
P IR z R z z R z−= + . Consequently: 

( )
( ) ( )2

2P

R z R z
R z

+ −
=   and  ( )

( ) ( )2
12I

R z R z
R z

z−
− −

= . 

u  

v  

e  

ah  2↓  

ag  2↓  
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Consequently: ( ) [ ], ,1a aP IP I
u e h T e h= ∗ + ∗ , where 1T  is the operator of 

translation  of 1 step in time. Similarly we have:
 

( ) [ ], ,1a aP IP I
v e g T e g= ∗ + ∗ . 

By taking the z-transform of the two previous expressions, we obtain: 

1
, ,

1
, ,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

a P P a I I

a P P a I I

U z H z E z z H z E z

V z G z E z z G z E z

−

−

= +

= +
 

which is, in matrix form: 

, ,

1
, ,

( )( ) ( ) ( )

( ) ( ) ( ) ( )

Pa P a I

a P a I I

E zU z H z H z

V z G z G z z E z−

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎟⎜⎟ ⎟⎜ ⎜ ⎟⎟ ⎟⎜⎜ ⎜= ⎟⎟ ⎟⎜⎜ ⎜ ⎟⎟ ⎟⎜⎜ ⎜ ⎟⎟ ⎟⎜ ⎜⎟ ⎟ ⎟⎜⎝ ⎠ ⎝ ⎠⎜⎝ ⎠
 

revealing what is called the polyphase analysis matrix5: 

, ,

, ,

( ) ( )
( )

( ) ( )

a P a IPoly
a

a P a I

H z H z
M z

G z G z

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
 

The analysis part of the diagram can then be illustrated as in Figure 5.20. 

 

Figure 5.20. The polyphase form of the decomposition part of the filter bank.  

Id is the identity transformation and T1 is the operator of translation of 1 step in time 

 

                                   
5 Some authors call the polyphase matrix the transposition of the matrix used here. 

2↓  
e  

v  1T
 

 

Poly
aM

 

2↓  

u  Id  
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Thus, we first separate the input e components with an even index Pe  
from 

those with an odd index Ie ; then, the outputs u  and v  are obtained using 

convolutions by filters, ( ), ,,a P a Ih h  for example, twice shorter than in Figure 5.19, 

and a summation. Thus, there are roughly half as many operations than in the initial 
notation, since the terms ,aP P

e h∗
 
and [ ] ,1 aI I

T e h∗
 
involved in the calculation of 

( ) [ ], ,1a aP IP I
u e h T e h= ∗ + ∗

 
are each four times shorter than ae h∗ . 

Proceeding in a similar way and defining the polyphase synthesis matrix by: 

, ,

, ,

( ) ( )
( )

( ) ( )

s P s IPoly
s

s P s I

H z H z
M z

G z G z

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
 

the synthesis part can be put in the form represented by Figure 5.21. 

 

Figure 5.21. Polyphase form of the reconstruction part of the filter bank 

The perfect reconstruction condition (for 0d = ) is then rewritten as: 

( )
1 0

( ) ( )
0

tPoly Poly
s aM z M z

z

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠
 

NOTE 5.2.– let us note § ( ) ( )1
a aH z H z−=  and ¤Poly

aM  the polyphase matrix 

associated with §aH . This amounts to considering §ah  the inverse filter of the ah  

filter. We then find a traditional formulation of the previous perfect reconstruction 
condition: 

( ) ¤ 1( ) ( )
t PolyPoly

s aM z M z Id− =  

2↑

2↑

s  

u  

v  1T

 

( )tPoly
sM

 

Id  
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Apart from the advantages concerning the implementation of the decomposition 
and reconstruction algorithms brought by the polyphase method, we also achieve a 
particularly important theoretical result. 

In the polyphase formulation we may reinterpret the passing from a 

( ), , ,a a s sH G H G  solution of [5.4] and [5.5] to a new solution ( ), , ,N N
a a s sH G H G  

or ( ), , ,N N
a a s sH G H G  using theorem [5.2] and multiplying the left side (or the 

right) of the polyphase analysis matrix (or of the transpose of polyphase synthesis 
matrix) by the matrix: 

( )1

0 1

S z⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠  

or 
( )

1 0

1T z

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠
 (

( )1

0 1

S z−⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠
 or 

( )

1 0

1T z

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎟⎜⎜⎝ ⎠
 respectively). 

Such an operation is called an elementary lifting step. 

The factorization theorem 5.3 introduced by Daubechies and Sweldens6 shows 
that all quadruplet perfect reconstruction filters have a polyphase matrix that can be 
factorized into a sequence of elementary lifting steps. 

THEOREM 5.3. (FACTORIZATION)– let there be ( ), , ,a a s sH G H G  verifying  

[5.4] and [5.5], such that the determinant of the polyphase matrix is equal to 1. 

Then, there exist two families of m  Laurent polynomials { } 1
m

i i
S =  and { } 1

m
i i

T =  

and a constant 0K ≠  such that the polyphase analysis matrix admits the following 

factorization: 

( )

( )
1

01 01
( )

110 1 0

m
iPoly

a
i i

KS z
M z

T z
K=

⎛ ⎞⎧ ⎛ ⎞ ⎫⎛ ⎞⎪ ⎪ ⎟⎜⎟ ⎟⎜ ⎜⎪ ⎪ ⎟⎟ ⎜⎟⎜ ⎜= ⎟⎨ ⎬⎟ ⎟ ⎜⎜ ⎜ ⎟⎟ ⎟⎪ ⎪⎜⎟⎟⎜⎜⎜ ⎜ ⎟⎟⎜⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∏  

Ů 

This theorem indicates how to construct an infinite number of solutions of [5.4] 
and [5.5] using only elementary lifting steps starting from a perfect reconstruction 
quadruplet. 

 

                                   
6 This theorem is cited in the article of Daubechies and Sweldens, “Factoring Wavelet 
Transform into Lifting Steps” [DAU 97]. See also theorem 7.13 on p. 275 of [MAL 98] 
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Let us stress that the elementary lifting matrices are explicitly invertible and the 
inverses are also elementary lifting matrices, since: 

( ) ( )11 1

0 1 0 1

F z F z− −⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜=⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎜ ⎜⎝ ⎠ ⎝ ⎠
 and 

( ) ( )

11 0 1 0

1 1F z F z

−⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜=⎟ ⎟⎜ ⎜⎟ ⎟−⎟ ⎟⎜ ⎜⎜ ⎜⎝ ⎠ ⎝ ⎠
 

This result has an important algorithmic consequence when a “polyphase” 
version of the wavelet decomposition is implemented: calculation of the synthesis 
step, the inverse of the preceding step, becomes elementary. 

5.3.3. Lifting and biorthogonal wavelets  

We can show7 that if ( ah ag sh , sg ) is a perfect reconstruction filter bank and if 

the modulus of the Fourier transforms are bounded, then the families 
( ) ( ){ }2 , 2a a kh k g k ∈⋅ − ⋅ − ¦  and ( ) ( ){ }2 , 2s s kh k g k ∈⋅ − ⋅ − ¦  are biorthogonal 

bases of 2( )l ¦ . In the particular case where ( ah , ag ) = ( sh , sg ) we obtain an 

orthogonal basis of 2( )l ¦ . 

Let us consider a perfect reconstruction filter bank ah , sh , ag  and sg . If ah  
and sh  have finite length, then: 

« «( )
1

1
( ) ( )

22
a a n

n

h
ω

ϕ ω
∞

=
= ∏  and « “( )

1

1
( ) ( )

22
s s n

n

h
ω

ϕ ω
∞

=
= ∏  

converge in ( )'S { , the set of tempered distributions. 

Consequently, aϕ  and sϕ  are also defined in ( )'S { . However, a priori there is 
no reason for aϕ  and sϕ  to be elements of ( )2L { . For that to be true, it is 
necessary to impose additional conditions. Unfortunately, they are technical and in 
general difficult to verify. However, we state the theorem introduced by Cohen 
([COH 90] and [MAL 98] p. 265). 

                                   
7 See theorem 7.9 in [MAL 98] p. 262. 
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THEOREM 5.4.– let ( ah , ag , sh , sg ) be a perfect reconstruction filter bank. We 

suppose that there exist two unique strictly positive trigonometric polynomials 

( )2i
aP e πω  and ( )2i

sP e πω  (up to a normalization) such that: 

« ( ) ( ) « ( ) ( ) ( )
22

( 1) 21
2

2 2
i i i

a a a a ah P e h P e P eπω π ω πωω ω ++
+ =  

“ ( ) ( ) “ ( ) ( ) ( )
22

( 1) 21
2

2 2
i i i

s s s s sh P e h P e P eπω π ω πωω ω ++
+ =  

We suppose, moreover, that: « ( )

1 1
,

2 2

0aInf h

ω

ω
⎡ ⎤∈ −⎢ ⎥
⎣ ⎦

>  and “ ( )

1 1
,

2 2

0sInf h

ω

ω
⎡ ⎤∈ −⎢ ⎥
⎣ ⎦

>

 
 

Then: 

– the functions «aϕ  and «sϕ , and, consequently, the functions aϕ  and sϕ , belong 

to ( )2L { . Moreover, the latter two functions satisfy the biorthogonality relations: 

( ) ( )( )
( )2 0,, ,a s nL

x x n nϕ ϕ δ− = ∀ ∈
{

¦  

– the two families ( ){ }, ,a j k j k
ψ

∈¦
 and ( ){ }, ,s j k j k

ψ
∈¦

 are Riesz biorthogonal 

bases of ( )2L { . 

Ů 

NOTE 5.3.– if 1a sP P= =  are appropriate, the first two conditions of the theorem 
and the perfect reconstruction condition are then written, by noting 

«
0

1
( ) ( )

2
am hω ω=  and § “

0
1

( ) ( )
2

sm hω ω= : 

22 1
0 0 2
( ) ( ) 1m mω ω+ + =  and § § 22 1

0 0 2
( ) ( ) 1m mω ω+ + =

 

 



148     Wavelets and their Applications 

§ §1 1
0 0 0 02 2( ) ( ) ( ) ( ) 1m m m mω ω ω ω+ + + =  

These conditions are well known (see Chapter 2) and simpler to verify. 
Ů 

We can then use the results of lifting in the context of biorthogonal wavelets. Let 
us consider the quadruplet ( ), , ,a a s sϕ ψ ϕ ψ  of scaling functions and biorthogonal 

wavelets. The process below shows that by using the results of lifting we can 
construct others quadruplets of scaling functions and biorthogonal wavelets. This is 

“formal”, in the sense that the functions obtained do not necessarily belong to 2L . 

Lifting process8. Let { }
k k

σ
∈¦

 be a family of real numbers containing a finite 

number of non-zero elements and ( ), , ,a a s sϕ ψ ϕ ψ  be a quadruplet of scaling 

functions and biorthogonal wavelets. For a fixed sϕ  the family ( ), , ,N N N
a a s sϕ ψ ϕ ψ , 

defined below, is also “formally” a quadruplet of scaling functions and biorthogonal 
wavelets. 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

N
s s sk

k

N N N
a a a ak k

k k

N N
a a ak

k

x x x k

x h x k x k

x g x k

ψ ψ σ ϕ

ϕ ϕ σ ψ

ψ ϕ

∈

−
∈ ∈

∈

⎧⎪⎪ = − −⎪⎪⎪⎪⎪⎪⎪ = − + −⎨⎪⎪⎪⎪⎪ = −⎪⎪⎪⎩⎪

∑

∑ ∑

∑

¦

¦ ¦

¦

 [5.10] 

If we put in parallel the above result and the lifting theorem [5.2], the 
modifications to the scaling functions and the wavelets for the associated filters 

correspond to a primal lifting of the Laurent polynomial ( ) k
k

k

S z zσ −= ∑ . 

Let us also note that the new wavelet N
aψ  verifies the same two-scale relation as 

the wavelet aψ . The functions N
aϕ  and N

sψ  satisfy new two-scale relations taking 

into account the contribution of the Laurent polynomial. 

                                   
8 See Sweldens, “The lifting scheme: a custom-design construction of biorthogonal 
wavelets”, Appl. Comput. Harmon. Anal., vol. 3, no. 2, p. 186-200, 1996. See also theorem 
7.12 in [MAL 98], p. 273. 
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Similarly, permuting the roles of a  and s  in [5.10] on the basis of the same 
initial quadruplet ( ), , ,a a s sϕ ψ ϕ ψ , we also construct quadruplets in the form of 

( ), , ,N N N
a a s sϕ ψ ϕ ψ . 

5.3.4. Construction examples  

The end of this chapter presents applications of lifting. First we treat examples 
that enable us to illustrate the effects of one or more lifting steps and of a 
parameterized lifting. Then we outline a lifting solution for two problems: 
construction of a wavelet admitting more vanishing moments that the initial wavelet 
and then the approximation of a pattern. 

 
The scaling functions and wavelets are constructed using the cascade algorithm 

described in Chapter 4. 

5.3.4.1. Illustrations of lifting 

The four following examples illustrate lifting. 

EXAMPLE 5.9. (THE BIOR1.3 WAVELET) 

In this example we show how to obtain the bior1.3 wavelet (see Chapter 4) using 
lifting.  

We start with Haar filters ( ),a ah g  and ( ),s sh g  whose z-transforms are given 

by: 

( )1
2

( ) 1aH z z= + , ( )11
2

( ) 1sH z z−= + , 

( )1
2

( ) 1aG z z= − +  and ( )11
2

( ) 1sG z z−= − + . 

The two pairs (scaling function, wavelet) ( ),a aϕ ψ  and ( ),s sϕ ψ  are represented 
in Figure 5.22. 
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Figure 5.22. The two pairs (scaling function, wavelet) associated with Haar filters 

Two steps of lifting are performed in order to obtain this. 

The first step is a dual lifting with the polynomial ( )11
8

( ) 1T z z−= − . The 

filters aH  and sG  are unchanged, the two others become: 

( )2 31 7 9 5 5( )
8 8 4 42

sH z z z z− −= + + −  and ( ) ( )a sG z z H z= − . 

The scaling function aϕ  associated with the pair( ),a aH G  is not modified. The 
three other functions are transformed as shown in Figure 5.23. 
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Figure 5.23. The two pairs (scaling function, wavelet) after the first lifting 

Thus, in passing, we obtain a new biorthogonal wavelet that is non-indexed, but 
usable. 

The second step is also a dual lifting. This time the polynomial used is 
( )1

8
( ) 1T z z= − . Again, the filters aH  and sG  are unchanged. The two others 

become: 

( )2 1 2 31 5 5 5 5( ) 1
4 4 4 42

sH z z z z z z− − −= − + + + + −
 

and ( ) ( )a sG z z H z= − . 

As in the first step, aϕ  is not modified and the three other functions are 
transformed. The pairs ( ),s sϕ ψ  for the analysis and ( ),a aϕ ψ  for the synthesis are 
the two pairs (scaling function, wavelet) corresponding to the bior1.3 case. 

In Figure 5.24 we represent the pairs (scaling function, wavelet) obtained after 
the second step of lifting. 
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Figure 5.24. The two pairs (scaling function, wavelet) after the second lifting 

Let us note that there is no unique manner to construct this pair. Indeed, two 
successive steps of lifting of the same nature (primal or dual) of the respective 
polynomial 1P  and 2P  can be replaced by only one step (of identical nature) of the 

polynomial 1 2P P+ . For the considered example, the single step of dual lifting of 

the polynomial ( )11
8

( )T z z z−= −  yields the same final result. 

 
Conversely, we can “divide” a step of this type into several successive steps. The 

intermediate results may prove interesting. Let us again take the example 
considered. We can obtain the same final result by starting again from the Haar 
filters and carrying out four steps of lifting. The first two filters consist of applying 

the first step of lifting above using ( )11
8

( ) 1T z z−= − . 
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Figure 5.25. The two pairs (scaling function, wavelet) after the 2nd lifting (top), 

and the two pairs (scaling function, wavelet) after the 3rd lifting (bottom) 

We then carry out two identical steps consisting of a dual lifting of polynomial 

( )11
16

( ) 2T z z z−= − + . In Figure 5.25 we represent the pairs (scaling function, 

wavelet) corresponding to the two intermediate steps of lifting. 

There again we obtain two new pairs of biorthogonal wavelets. Let us note that 
the two synthesis pairs consist of irregular functions, which finally yield a pair of 
regular and symmetrical functions. 

EXAMPLE 5.10. (LIFTINGS PARAMETERIZED ON THE BASIS OF THE 
HAAR WAVELET) 

The purpose of this example is to illustrate the extreme variety of results that can 
be obtained by applying the same lifting step up to a constant, to a fixed initial 
quadruplet. 

Let us again start with Haar filters and carry out a single step of dual lifting with 

the polynomial: ( )11
( ) 1T z z

K
−= − . Let us successively choose values 1, 2, 4, 6, 

32 and 128 for the constant K . The results are collected in Figures 5.26, 5.27 and 
5.28. The first two cases yield highly irregular functions. When the parameter K  is 
small it becomes necessary to calculate the Fourier transforms of the filters precisely 
in order to know if we still remain within the finite energy functions framework. For 

4K =  we obtain a pair whose synthesis couple resembles db2. For 6K =  we 
have a smoothed version thereof. The last two cases illustrate that as K  grows we 
approach the Haar wavelet, which is discontinuous. 
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Figure 5.26. The two pairs (scaling function, wavelet) after one lifting step. 

Top for K = 1, bottom for K = 2 

     

     

Figure 5.27. The two pairs (scaling function, wavelet) after one lifting step. 

Top for K = 4, bottom for K = 6 

     

     

Figure 5.28. The two pairs (scaling function, wavelet) after one lifting step. 

Top for K = 32, bottom for K = 128 
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EXAMPLE 5.11. (A DUAL LIFTING + A PRIMAL LIFTING) 

In all the previous examples we have only used dual liftings. The scaling 
function aϕ  then remains unchanged. In this example we carry out a dual lifting and 

then a primal lifting. Under these conditions the four functions ( ),a aϕ ψ , ( ),s sϕ ψ  

are modified. The first step is a dual lifting of polynomial: ( )11
( ) 1T z z

K
−= − . 

The second step is a primal lifting of polynomial: ( )11
( ) 1S z z

K
−= − + . Figure 

5.29 illustrates this example for K = 5. 

     

     

Figure 5.29. The two pairs (scaling function, wavelet) after two lifting steps 

EXAMPLE 5.12. (“LAZY WAVELET” AND BIOR1.3) 

Example 5.9 shows how to obtain the bior1.3 wavelet starting from the Haar 
wavelet. This example aims at illustrating an alternative construction, on the basis of 
an object which is not a wavelet, the “lazy wavelet”, and by applying a succession of 
elementary liftings. 

The most direct construction uses two elementary lifting steps and a 

normalization constant 
1

2
K =  (see the factorization theorem 5.3). The first step 

is a primal lifting of polynomial ( ) 1S z =  which does not lead to a pair of 

biorthogonal wavelets. The second lifting step is a dual lifting with 

( )11
( ) 8

16
T z z z−= − + + . We can also “divide” this last step into several dual 

lifting steps. Splitting { } ( ){ }11 1
( )

2 16
T z z z−= + − +  yields the Haar wavelet as 
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an intermediate result. We can also use the split 

( ){ } ( ){ }1 11 1
( ) 16

32 32
T z z z z z− −= − + + + − +  leading to a new pair of 

biorthogonal wavelets. In Figure 5.30, we illustrate this last construction. 

    

    

Figure 5.30. The two pairs (scaling function, wavelet) after the 2nd lifting step 

5.3.4.2. Construction of wavelets with more vanishing moments 

On the basis of a quadruplet ( ), , ,a a s sϕ ψ ϕ ψ  we wish to construct a wavelet 
N
sψ  that has more vanishing moments than sψ . Let us again take the first of the 

relations [5.10]: ( )N
s s sk

k

x kψ ψ σ ϕ
∈

= − −∑
Z

. We multiply it by mx , for 

0, ,m M= A  and integrate over { . The finite family of coefficients { }
k k

σ
∈¦

 

satisfies a linear system of ( )1M +  equations: 

( ) ( ) ( ) , 0, ,m N m m
s s sk

k

x x dx x x dx x x k dx m Mψ ψ σ ϕ
∈

= − − =∑∫ ∫ ∫{ { {¦
A  

It is therefore enough to find a family of ( )1M +  coefficients { }K M

k K
σ

+
 

leading to a linear system of ( )1M +  equations with ( )1M +  unknowns. 
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Let us consider an elementary example. We start with the quadruplet 
( ), , ,a a s sϕ ψ ϕ ψ , consisting of the scaling function and the Haar wavelet for analysis 
and synthesis and we wish to construct a new wavelet N

sψ  with two vanishing 
moments. The new wavelet N

sψ  has the form: 

( ) ( ) ( ) ( )0 1 1N
s s s sx x x xψ ψ σ ϕ σ ϕ= − − −  

The numbers 0σ  and 1σ  are solutions of a linear system of two equations with 

two unknowns. Since sψ  has one vanishing moment and sϕ  integrates 1, the first 

equation is reduced to: 0 10 σ σ= + . The calculation of the moments of order 1 

yields the second equation: 1
0 12

3σ σ= + . Consequently, 1
1 4

σ =
 
and 1

0 4
σ = − . 

The obtained N
sψ  function is:  

 

The functions of the new quadruplet are those obtained in the first row of Figure 
5.27, from left to right: sϕ , N

sψ , N
aϕ  and N

aψ . 

5.3.4.3. Approximation of a form by lifting 

In this section we outline the search for a wavelet approximating a form f  by 
lifting. We use the first relation of [5.10] to approximate f  by 

( ) ( ) ( )N
k

k

x x x kψ ψ σ ϕ
∈

= − −∑
Z

, where the choice of the family ( )k k
σ ∈Z  is to 

be made for given ψ  and ϕ . 

Let us, firstly, make two observations: 

– Nψ  is constructed by “correcting” ( )xψ , which is a fixed function of 0W , 

using a chosen function belonging to 0V ; 

( ) 

[ ]

[ ]
[ ]

13 
24 

15 
24 

1 
4 

0 

0,

,1

1,2

otherwise 

N 
s 

over 

over 
x

over 
ψ  

− 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ = ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎪ 
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– for Nψ  to be a wavelet, its integral has to be zero and, therefore, that 

0k
k

σ
∈

=∑
Z

. 

The approximation of the form f  amounts to minimizing 2

N

L
f ψ− , i.e. to 

minimizing the sum of the two terms: 

( ) ( ) ( )

( ) ( ) ( )

2
0 0

0 0

2

22

N
V V kL

k

V V k
k

f f P f P f x k

f P f P f x k

ψ ψ σ ϕ

ψ σ ϕ

⎛ ⎞⎟⎜− = − + − − − ⎟⎜ ⎟⎟⎜⎝ ⎠

= − − + + −

∑

∑

 

because ( )
0

Vf P f−
 

is orthogonal to 0V , 0 0W Vψ ∈ ⊥
 

therefore, 

( )
0

0Wf P f Vψ− − ⊥  and ( ) ( )
0

0V kP f k Vσ ϕ+ ⋅ − ∈∑ . 

The first term is fixed when ψ  is fixed and the lifting only makes it possible to 

minimize the second term. 

It is important to note that the corrections are on the same scale as f . An 
approach consists of dilating f  so that the scale of the corrections becomes small 

compared to that of the approximated form. The technique would then consist of 

approximating a dilated version of f , ( ) ( )22 2
j j

jF x f x
− −

− =  for 0j >  by its 

projection onto 0V  and then contracting the obtained function. The result is 

obviously better because this amounts to approximating f  by its projection onto 

jV− , which is a space providing finer approximations. Indeed, for the example of 

the Haar wavelet, 0V  consists of functions constant in the intervals [ , 1[k k + , 

k ∈ Z , whereas jV−  is the space of functions constant in 2j  times smaller 

intervals [k2–j, (k + 1) 2–j [. This approach has been deeply investigated by Mesa 
[MES 05]. 



Chapter 6 

A Short 1D Illustrated Handbook 

6.1. Introduction 

Interesting signals generally exhibit numerous non-stationary characteristics that 
constitute a considerable part of the information contained in a series: drifts, trends, 
breakdowns, beginnings and ends of events, transitory phenomena. Most classical 
mathematical approaches widely used are well adapted to the study of stationary 
processes. Among others we may cite the spectral approach linked to the Fourier 
transform and that resulting from the ARMA processes [AZE 84]. 

This chapter takes you through the wavelet decomposition of signals and 
compiles “illustrated handbooks” associated with classical situations frequently 
encountered in statistics or signal processing. Its application is pedagogical as well 
as practical, and is based on the analysis of several elementary examples to learn 
how to recognize forms. The signals are presented followed by tests and trials, and 
we comment on the results. This chapter consists of three parts. 

The first part1, which is also the longest, concerns discrete signal analysis. It is 
intentionally over-detailed and exploits the capacity of wavelets to decompose a 
signal into a sum of approximation and detail signals. The topics dealt with relate to 
the identification of trends, periodic signals, noises, breakdowns and discontinuities. 
The commented analysis of 10 simulated signals constitutes the first “illustrated 
handbook”. It is supplemented by an examination of two real signals: an electrical 
load curve and an electroencephalogram. 

                              
1 This part has borrowed much from the article [MIS 93] published in Revue de Statistique 

Appliquée, which the authors thank for the kind authorization. 



160     Wavelets and their Applications 

The second part is short and dedicated to the discrete wavelet packet analysis. 
Wavelet packets are a generalization of wavelets which make it possible, in 
particular, to improve the frequency resolution of the wavelet analysis. This aspect is 
illustrated by three examples. 

The third part deals with continuous analysis, which is focused on detail 
coefficients and enables a better detection and a better description of singularities. In 
particular, we deal with the cone of influence of a singularity, the frequency 
resolution of the analysis and the precise analysis of the Hölderian regularity of the 
singularities. 

6.2. Discrete 1D illustrated handbook 

In this section we are interested exclusively in reconstructed approximation and 
detail signals (see section 6.2.2). The wavelet coefficients are, in turn, the subject of 
comments on continuous analysis (see section 6.4). 

6.2.1. The analyzed signals 

The signals are organized by topics illustrating one or more possibilities of 
wavelet decomposition: 

– identifying periodic signals. This involves comparing wavelet and Fourier 
transforms. We examine a superposition of sine p and then two sines of different 
frequencies side by side; 

– recognizing noises. We examine the wavelet decomposition of white and 
colored noise; 

– locating breakdowns and discontinuities. Three signals contain breakdowns or 
discontinuities of the derivative of the underlying functions. They make it possible 
to illustrate the capacity of wavelets to highlight them: “a step”, “two proximal 
discontinuities”, “a discontinuity of the second derivative”; 

– decomposing into trend + seasonal component + noise. We are interested in 
the decomposition of three signals: 

- the first two, which are simulated, lend themselves to a classical additive 
decomposition into trend, seasonal component and noise, 
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- the third, a real signal, is a piece of the electrical load curve for June 1990 
of the French electrical company EDF. The sampling period is one minute and the 
time series is, up to a transform, the consumption of electricity in France. The 
description goal led to performing a multiscale analysis of this signal; 

– locating events. This involves detecting a typical frequency signature in an 
electroencephalogram. 

6.2.2. Processing carried out 

For the notations and concepts relating to the mathematical framework see 
Chapter 2. 

In the analyses in this section we use wavelets of the dbN family and sym8 (see 
Chapter 4). Practically speaking, we handle two types of objects: 

– wavelet coefficients (i.e. detail coefficients). They are especially useful to 
recognize breakdowns or discontinuities. They are the co-ordinates in the 

orthonormal bases of kW
 

repeated 2k
 times in order to allow a reading 

synchronous with the signal. Wavelet coefficients will not be used here because 
from our point of view they bring less information than reconstructed signals; 

– details and trends (or approximations) reconstructed in the original time. The 
simultaneous examination of approximations and details proves very useful for the 
multiscale aspects and we will cover this point in detail, particularly from the 
practical point of view. Processing techniques are based on this idea, which we will 
now specify. 

In order to decompose a discrete signal we usually choose to assimilate it to its 
co-ordinates in the basis of 0V . We will do that noting, however, that other choices 

are possible, such as, for example, interpolation followed by projection. In addition, 
the signal is available on a finite time interval. This induces edge effects that are 
local effects becoming weaker as the support of the analyzing wavelet decreases in 
size and the resolution increases. Let us recall that, if the discrete time available 
sample is of length L , the wavelet coefficients, which are the co-ordinates in the 

basis of jW  (space of details at level j ), are of approximately 
2

L
j

. The same holds 

true for the coefficients of the corresponding approximation. These sequences of 
coefficients are reconstructed in 0V , i.e. by changing basis we get back in the same 

space as the basic signal (by using inclusions of jV  and of jW  in 0V , for 0j > ), 

and thus have a length of L . 
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Thus, we decompose the processed signal S  into a sum of orthogonal signals 
corresponding to different time scales, i.e.: 

2 1j jS A D D D= + + + +A  

where, if the choice of the wavelet is neglected, we have: 

– jA , the approximation or trend at level j  containing the components of S  of  

“period” larger than the 2j ; 

– kD , the detail at level k  containing the components of the signal of “period” 

included between 12k−
 and 2k . 

For each signal we simultaneously examine: details 1D  to jD  in this ascending 
order and with respect to the approximations 1A  to jA . 

Each signal is studied according to a common pattern including the following 
headings: 

– the analyzed signal; 

– the analyzing wavelet; 

– the number of decomposition levels; 

– comments on the graphs; 

– possible additions to be tested by the reader. 

6.2.3. Commented examples 

6.2.3.1. A sum of sines 

Analyzed signal (Figure 6.1):
 1( ) sin(3 ) sin(0.3 ) sin(0.03 )s t t t t= + + . 

Analyzing wavelet: db3, 5 levels of decomposition. 

Comments  

The signal consists of the sum of three sines: “slow”, “medium” and “fast” with 
respect to the sampling period of 1, the corresponding periods are approximately 
200, 20 and 2 respectively. We should thus essentially see the “fast” sine in 1D , the 
“medium” sine in 4D  and, finally, the “slow” sine in 4A . The slight differences 
noted in the decompositions are due, in particular, to the sampling period and the 
wavelet choice. 
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The detail 1D  contains mainly the components of 1s  for a period between 1 and 
2, i.e. the “fast” sine, but its period is not visible on the graph. Zooming in on 1D

 
reveals that each antinode consists of 10 oscillations and makes it possible to 
estimate the period. We find a period close to 2. The detail 2D

 
has a very small 

amplitude. This is clear from the approximations: the first two resemble each other 
since 1 2 2A A D= + . The details 3D  and, especially, 4D

 
contain the “medium” 

sine. Indeed, we observe a breakdown between approximations 3 and 4. 

Approximations 1 to 3 make it possible to estimate the period of the medium 
sine and thus, there only remains the “slow” sine appearing in 4A . The distance 
between two successive maxima is 200, which is the period of the slow sine. The 
latter, still visible in 5A , disappears from the approximation and move into the 
detail at level 8.  

 

Figure 6.1. A sum of sines 
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Supplements 

– Test other wavelets (few changes are notable).  

– Test other linear combinations of periodic signals: dyadic period sines, 
periodized blocks with dyadic period. 

6.2.3.2. A frequency breakdown 

Analyzed signal (see Figure 6.2): two sines side by side. 

( )
2

sin(0.03 )

sin(0.3 )

t
s t

t

⎧⎪⎪⎪= ⎨⎪⎪⎪⎩

if

if

500

500

t

t

≤

>
 

Analyzing wavelet: db5, 5 levels of decomposition. 

Comments 

The signal consists of a “slow” sine and a “medium” sine, on either side of 
position 500. These two sines are not continuously connected. 

Details 1D  and 2D  make it possible to detect this discontinuity. It is localized 
very precisely: only a small zone around 500 contains large details. This stems from 
the fact that the rest of the signal does not have such high frequencies. Let us note 
that if we were interested exclusively in the location of discontinuity, db1 or db2 
would be more useful than db5. 

Details 3D  and 4D
 
contain the “medium” sine as in the previous analysis. 

The “slow” sine appears in 4A . It is more regular than in the previous analysis 
since the regularity of db5 is greater than that of db3. 

The same signal analyzed by the Fourier transform would not have made it 
possible to detect the moment of change of signal frequency, clearly highlighted 
here. 

Supplements 

– Test other wavelets (few changes are notable). 

– Analyze a similar signal, but continuous in 500. 
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Figure 6.2. Two sines side by side 

6.2.3.3. White noise 

Analyzed signal (see Figure 6.3): uniform white noise over 
1 1
,

2 2
⎡ ⎤−⎢ ⎥
⎣ ⎦

. 

Analyzing wavelet: db3, 5 levels of decomposition. 

Comments 

At all levels we find noise-type signals which, as we will see, are irregular. This 
stems from the fact that for a white noise all the frequencies carry the same energy. 

The variances, on the other hand, decrease regularly from one level to the next, 
as can be seen by an ascending reading of the graphs of details and approximations. 
The reduction in variance is by a factor 2 between two successive levels, i.e. 

1var( ) 2 var( )j jD D += . The effect of such a noise is thus blurred at low 
resolutions.  
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Figure 6.3. Uniform white noise 

Let us note, finally, that the details and approximations are not white noises and 
that these signals are increasingly dependent as the resolution decreases. We are 
dealing with moving averages, whose order depends on the length of the filters 
associated with the wavelet and on the level j . On the other hand, wavelet 
coefficients are non-correlated random variables. This property cannot be read in the 
reconstructed signals examined here. 

Supplements 

Test a Gaussian white noise and wavelets associated with longer filters. 

6.2.3.4. Colored noise 

Analyzed signal (see Figure 6.4): autoregressive noise AR (3). 

( ) ( ) ( ) ( ) ( )
2 2 2 2 11.5 1 0.75 2 0.125 3 0.5b t b t b t b t b t= − − − − − − + +  

where ( )
1b t  is the uniform noise studied in the preceding section. 
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Analyzing wavelet: db3, 5 levels of decomposition. 

 

Figure 6.4. Noise AR (3) 

Comments 

This example has to be examined with respect to the previous one, since, 
contrary to the case of white noise, here we are dealing with a colored noise whose 
spectrum primarily loads high frequencies. 

It is therefore mainly found in 1D , which contains the major portion of the 
signal. In the graphs the details are on a larger scale than the trends. 

In this situation, frequently encountered in practice, the effects of the colored 
noise in the analysis grow blurred much more quickly than those of white noise.  

In 3A , 4A  and 5A  we find the same scheme as in the analysis of white noise, 
from which this colored noise is constructed using linear filtering. 
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Supplements  

– Test other ARMA, for example: 

( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 1 11.5 1 0.75 2 0.125 3 0.7 1b t b t b t b t b t b t= − − − − − − + − −  

– Test an integrated ARMA (ARIMA), for example: 
( ) ( ) ( )

4 4 31b t b t b t= − + . 

6.2.3.5. A breakdown 

Analyzed signal (see Figure 6.5): a step signal. 
 
Analyzing wavelet: db2, 5 levels of decomposition. 

Comments 

Here we deal with the simplest example of a breakdown: a step function. The 
jump  occurs at time instant 500.  

 

Figure 6.5. A step signal 
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The breakdown is detected at all levels but, of course, with greater precision at 
high resolutions (levels 1 and 2) than at low ones (levels 4 and 5). It is very precisely 
localized at level 1 where only a very small zone around the jump time is visible.  

Let us note that in fact the reconstructed details each essentially contain a basic 
wavelet in 0V . 

Let us note, finally, that the localization of the breakdown is better the shorter 
the wavelet associated with a filter is. 

Supplements 

– Test other wavelets. 

– Replace the step function by an impulse. 

– Add a noise to the signal. 

6.2.3.6. Two breakdowns of the derivative 

Analyzed signal (see Figure 6.6): two proximal discontinuities of the derivative. 
 
Analyzing wavelets: db2 and db7, 4 levels of decomposition. 

Comments 

The signal consists of two straight lines with the same slope, on both sides of a 
very short platform starting at 500. Besides, the platform is not very visible over the 
original signal with the naked eye. 

Two analyses are performed: one with the highly localized wavelet db2, which 
has a short filter, is presented in the left-hand column, and the other, with the 
wavelet db7 and a longer filter, is shown in the right-hand column.  

In both analyses the platform is very well detected: 1D
 
is zero outside a limited 

zone. The presence of two singularities is clear for db2, for which we distinguish the 
initial and final time instants of the platform. On the contrary, for db7 two 
discontinuities of the first derivative are fused and only the whole platform is 
“visible”. 

This example suggests choosing wavelets associated with short filters to 
distinguish proximal discontinuities. The examination of other levels of detail again 
illustrates the lack of precision of detection at low resolutions. Both wavelets db2 
and db7 filter segments of the straight line and analyze discontinuities because they 
are orthogonal to the polynomials of a degree lower or equal to one. 
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Figure 6.6. Two proximal discontinuities of the derivative 

Supplements  

– Test other wavelets. 

– Vary the size of the platform. 

– Add a noise. 

6.2.3.7. A breakdown of the second derivative 

Analyzed signal (see Figure 6.7): a discontinuity of the second derivative 

( )

2

3 2

exp( 4 )

exp( )

t
s t

t

⎧⎪ −⎪⎪= ⎨⎪ −⎪⎪⎩

if

if

0

 0

t

t

<

≥
 

Analyzing wavelets: db1 and db4, 2 levels of decomposition. 
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Comments 

This example shows that the number of vanishing moments can be an important 
criterion in the choice of the wavelet. The function consists of two exponentials 
connected at 0 and the analyzed signal is the sampling of the continuous function 
with steps of 310− . It is analyzed by two wavelets: db1, wavelet with low 
regularity, on the left and db4, a more regular wavelet, on the right. 

For db4, on the right, the discontinuity is well detected: the details are large only 
in 0 and zero everywhere else. It is the only element arising from the analysis. 

On the left, for db1, the situation is completely different: the black zones 
correspond to very fast oscillations of the details. These values are equal to the 
difference between the function and an approximation by a piecewise constant 
function. The value of details is very small, about 310−  for db1, because 3s  is very 
smooth and does not contain high frequencies. This order of magnitude is even 
smaller for db4 (about 610− ) because the associated basis functions are more 
regular than for db1. The slow decrease of the amplitude of details as t varies from 

0.5−  to 0 and the slow growth from 0 are explained by the fact that the derivative 
of 3s  

is zero in 0 and continuous.  

In this example we note that it is necessary to take a wavelet with sufficient 
vanishing moments in order to detect only the singularity. Indeed, the function 3s  
can be written in the form: 

( )
( )
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2 4

3 2 4

1 8

1 2
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d

t t R t
s t

t t R t
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 0

t
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We will denote ( )gR t  and ( )dR t
 
simply ( )R t . 

The wavelet db4 has four vanishing moments and, consequently, the details 
reflect the fluctuations of 4 ( )t R t  that are small around 0. 

The wavelet db1 has only one vanishing moment and therefore the details 
contain variations of 2 4 ( )bt t R t+ . Those of the term 2bt  dominate, which explains 
the existence of oscillations and their amplitude, different on either side of 0, since 
the coefficient of 2t  changes. 
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Figure 6.7. A discontinuity of the second derivative 

Supplements  

– Add a noise. If it is sufficiently large, it masks the discontinuity and the 
detection fails. 

– Sample less frequently; the analysis is sensitive to the sampling period. 

6.2.3.8. A superposition of signals 

Analyzed signal (see Figure 6.8): a triangle + a sine + a noise. 
 
Analyzing wavelet: db5, 7 levels of decomposition. 

Comments 

The signal examined here is the sum of three components: a triangle, a sine and a 
noise. The sine sin(0.3 )t  is the one already seen in signals 1s  and 2s  studied 
previously. The noise is the uniform white noise presented in section 6.2.3.3, but 
divided by 3. 
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Figure 6.8. A triangle + a sine + a noise 

Details 1D  and 2D  are due to the noise. We will be able to compare them with 
those of noise analysis. Details 3D  and, especially, 4D

 
are due to the sine. There 

again we will be able to compare with the details 3D  and 4D
 
of the analyses of 1s  

and 2s . Higher level details are increasingly small and come from the noise. The 
approximation 7A  contains the triangle, generally well recovered. Its “round” form 
is partly due to the regularity of the wavelet db5. 

Supplements 

– Replace the triangle by a polynomial. 

– Replace the white noise by an ARMA noise. 

6.2.3.9. A ramp with colored noise 

Analyzed signal (see Figure 6.9): a ramp + an ARMA noise. 

Analyzing wavelet: db3, 6 levels of decomposition. 
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Figure 6.9. A ramp + an ARMA noise 

Comments 

The signal is built using the “trend” plus noise scheme. The “trend” is a slow 
linear rise from 0 to 1 until the time instant 500t =  and is constant afterwards. The 
noise is the centered AR(3) noise varying roughly between –3 and 3, examined in 
section 6.2.3.4. 

A priori the situation seems difficult from the point of view of the separation of 
the ramp and the noise. Indeed, the order of magnitude of the noise is six times 
larger than that of the ramp. In fact, that is not important: the two components of the 
signal being well separated in frequency. The approximations are quite acceptable 
from level 3, with satisfactory reconstructions of the ramp. 
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Wavelet analysis being additive, the details are those of the previously analyzed 
colored noise, except for a small area around 500. In the same way, the 
approximations are equal to those of the colored noise, plus smoothed versions of 
the ramp. 

Supplements  

Test others wavelets. 

6.2.3.10. A first real signal 

Analyzed signal (see Figure 6.10): piece of an electrical load curve. 

Analyzing wavelet: db3, 5 levels of decomposition. 

Comments  

The shape of the series is a central peak preceded and followed by a hollow, and 
then a second definitely less pronounced peak.  

Level 1 and 2 details have the same order of magnitude and account for local 
irregularities due to the noises. The detail at level 3 presents large values at the 
beginning and the end of the main “peak” and makes it possible to locate the 
corresponding hollows. Level 4 detail causes the coarser morphological aspects of 
the series to appear (three successive peaks) and conforms remarkably well to the 
shape of the curve. They are the essential components of the signal with periods 
shorter than half an hour.  

This is also seen very clearly in the approximations: 1A  and 2A  look very much 
alike and 3A  still constitutes a reasonably accurate approximation of the original 
signal. By examining 4A , however, we note a considerable loss of information. This 
information consists of detail at level 4.  
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Figure 6.10. An electrical load curve 

In the case of this record, it is the multiscale aspect that is the most interesting 
and the one carrying most information: the essential components of the electrical 
signal to supplement a bi-hourly description (homogenous with the level 5 
approximation) are the components with a “period” ranging between 8 and 16 
minutes. 

6.2.3.11. A second real signal 

Analyzed signal (see Figure 6.11): piece of an EEG. 

Analyzing wavelet: sym8, 5 levels of decomposition. 
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Comments 

It is well-known that electroencephalograms (EEG) which reflect the electrical 
activity of the brain, are non-stationary signals: their spectral characteristics (i.e. in 
the frequency domain) change with time. 

                    Signal and Approximation(s)                Signal and Detail(s) 

 

Figure 6.11. An EEG  

In order to interpret such signals, it is interesting to identify the time instants of 
change and to locate the relevant frequencies (or scales). For the signal analyzed 
here we seek to locate the areas associated with the position from 700 to 900, for the 
main one, and from 200 to 350 for the secondary one. 

The examination of the orders of magnitude of the fluctuations of details shows 
that the level 4 detail is the most important. 
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The examination of approximations, from the finest 1A  to the coarsest 5A , leads 
to observing that passing from level 3 to level 4 causes the clearest break. This 
confirms the importance of the detail at level 4 since 4 3 4A A D− = . 

Details at levels 1 and 2 primarily capture the local irregularities caused by noise 
and the abrupt changes of the signal at the positions 80, 620 and 730. 

Detail 4D  isolates the two areas sought in this analysis (see boxes appearing in 
detail 4). They correspond to zones locally homogenous in frequency and of 
considerable amplitude. 

Wavelet analysis makes it possible to easily capture useful information in level 4 
detail that we could then process and analyze. 

6.3. The contribution of analysis by wavelet packets 

Wavelet packets are a generalization of orthogonal wavelets. They enable a finer 
analysis by decomposing not only the approximation but also the detail at each level. 
Introduced to deal with the lack of frequency resolution in the wavelet analysis, their 
principle is to some extent to cut the details up in frequency bands (see Chapter 2). 
Consequently, we construct representations of coefficients in the time-frequency 
plane that are adequate to highlight their contribution. 

Here we illustrate the improvement brought by wavelet packets for the frequency 
resolution of the analysis with three examples: two chirps (linear and quadratic) 
followed by a periodic signal and finally, in the last example, we consider a more 
composite signal. 

6.3.1. Example 1: linear and quadratic chirp 

The first signal presented is a “linear chirp”, i.e. an oscillating signal whose 
frequency 250 tπ  increases linearly with time. 

We consider the function ( ) [ ]2sin 250 , 0,1y t tπ= ∈  and take a sampling of 
length 512. In Figure 6.12 we present an analysis at level 4 by wavelets (on the left) 
and by wavelet packets (on the right) using the wavelet db2.  

Decomposition by wavelets (stemming from the analysis by packets) and 
complete decomposition by wavelet packets are represented in the same way. The 
horizontal bands associated with the packets are arranged in order of ascending 
frequency, lower frequencies being at the bottom. The coefficients are colored 
according to their absolute value. 
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Figure 6.12. Decomposition of a linear chirp: on the left using wavelets  

and on the right using wavelet packets 

The height of the colored bands is inversely proportional to the scale of the 
corresponding node in the underlying tree, which represents the organization of the 
wavelet packets (see section 2.5.3). Consequently, this height is proportional to the 
associated frequency bandwidth. Thus, for wavelet decomposition, on the left, we 
have (from top to bottom) bandwidths which are respectively proportional to 1/2, 
1/4, 1/8 and 1/16 for details at level 1 to 4, and 1/16 again for approximation at level 
4. On the right, for wavelet packets decomposition, each node of the tree is on the 
same scale 24 and, thus, all the frequency bands have the same width of 1/16. 

For the wavelet analysis it is very difficult to identify the property of linearity of 
frequency. On the other hand, on the representation of the packet coefficients, it is 
obvious that those with the largest absolute value are organized following a line. 
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Figure 6.13. Decomposition of a quadratic chirp into wavelet packets with sym12 

We can perform the same experiment with a “quadratic chirp”, i.e. with a 
function of the type ( )3siny kt=  whose frequency is 2kt . In Figure 6.13 we find 
the decomposition at level 5 using wavelet packets of such a signal using the 
wavelet sym12. 

We then clearly identify the quadratic time-frequency dependence on the 
representation of the packet coefficients: the largest in absolute value are distributed 
in the time-frequency plane following a parabola. 
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6.3.2. Example 2: a sine 

The signal is a sampling with a length of 256 of a sinusoid with a period 8. We 
use the Haar wavelet and carry out a wavelet analysis at level 7 (on the left in Figure 
6.14) and a same level analysis by wavelet packets (on the right). 

                   

 

Figure 6.14. Decomposition of a sine: on the left using wavelets  

and on the right using wavelet packets 

The frequency representation and the mode of coloring of the coefficients are the 
same as in the previous example. The x-axis represents time and the y-axis 
represents the growing frequencies, from the bottom to the top. 

The wavelet decomposition localizes the period of the sine while only expressing 
that it belongs to the interval [8, 16], which illustrates the lack of frequency 

Frequency localization by 
wavelets 

Frequency localization by 
wavelet packets 
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resolution. On the other hand, estimating the period is much easier by exploiting the 
precise information provided by the wavelet packet decomposition: instead of the 
interval [8, 16] on the left, we find, on the right, the period 8 associated with the 
darkest line. We also note the presence of another rather dark line, corresponding to 
period 2. It will not be retained because its presence depends on the choice of the 
wavelet. 

6.3.3. Example 3: a composite signal 

Let us now consider a more composite signal produced by summing two chirps, 
linear and quadratic, and a sine. 

 

Figure 6.15. Decomposition with sym12 in wavelet packets  

of the sum of two chirps and a sine  
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In Figure 6.15 we find the decomposition at level 5 using wavelet packets of 
such a signal using the wavelet sym12. 

We easily detect the three major signal components on the representation of the 
wavelet packet coefficients in the time-frequency plane. The straight line with 
positive slope is associated with the linear chirp, the parabola to the quadratic chirp 
and the straight line parallel to the horizontal axis is associated with the sine. This, 
in particular, illustrates the additivity of the wavelet packet analysis. 

6.4. “Continuous” 1D illustrated handbook 

To illustrate the usefulness of continuous analysis we will concentrate on the two 
following aspects: 

– detection of singularities; 

– improved resolution in time and scale compared to discrete analysis. 

The principal difference with discrete analysis lies in the absence of the notion of 
approximation: there are only detail coefficients. Moreover, we do not consider 
reconstructed signals. 

In this section, we examine three aspects: 

– illustration of the time resolution and description of the cone of influence in the 
analysis of a singularity; 

– illustration frequency resolution of the analysis; 

– detailed study of the Hölderian regularity of singularities. 

6.4.1. Time resolution 

6.4.1.1. Locating a discontinuity in the signal 

Let us take as a first example the characteristic function of an interval, which is 
equal to 1 on the interval and 0 elsewhere, and perform an analysis using the 
continuous wavelet transform. First, we use a wavelet with a small support: the Haar 
wavelet. 

The signal (at the top of Figure 6.16) is of length 1,024 and has two 
discontinuities. We perform an analysis for the scales from 2 to 128. The 
coefficients (at the bottom of the figure) are colored according to their absolute 
value: the smallest appear light, while the largest are darker. We note that 
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discontinuities are easily located on small scales. The more the scale increases, the 
broader the support of the analyzing wavelet and more coefficients are thus 
influenced by the singularity. This explains the visual “cone” effect. 

Now let us use (Figure 6.17) a wavelet with larger support, for example the 
“Mexican hat” (the second derivative of a Gaussian). 

The coefficients are colored as previously. We note that discontinuities are 
perfectly located on small scales. However, the support of the analyzing wavelet 
grows quicker. The cone effect is still visible and, thus, much more important; on 
the larger scales the singularities overlap in the sense that the cones of influence are 
less clearly separated. 

In Figure 6.18 we perform a 3D plot of the results (db1 on the left and the 
Mexican hat on the right) and we then obtain a more “spectacular” effect. 

 

Figure 6.16. Continuous analysis with the Haar wavelet 
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Figure 6.17. Continuous analysis with the “Mexican hat” 

The large scales are represented in the foreground in order to highlight the cone 
effect. We clearly see the difference in behavior between the two wavelets for the 
large scales; small scales are less dissimilar. 

   

Figure 6.18. 3D representations of continuous analyses:  

with Haar on the left and the “Mexican hat” on the right 

6.4.1.2. Locating a discontinuity in the derivative of the signal 

Let us take as a second example a “triangle” function, which has discontinuities 
in the first derivative (see Figure 6.19).  

One of these discontinuities is clearly visible in the middle of the signal, whereas 
the others are invisible to the naked eye. Indeed, in the middle of each slope, with 
positions 250 and 750, there is a small invisible platform. Let us perform an analysis 
using a very regular wavelet: the 8th derivative of a Gaussian. 
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The signal of length 1,024 is analyzed for the scales from 1 to 64. The 
coefficients are colored from the smaller, in lighter shades, to the largest, in dark 
shades. All discontinuities are located perfectly, in particular on the small scales. 

The cone effect is visible three times: for the platforms and for the central point. 
The amplitude of the breakdowns in the derivative is maximal for the central point; 
this is visible on the coefficients for all the scales. Also, let us note that a half-cone 
appears at each edge. It is due to the discontinuity introduced to the derivative by the 
signal extension using by zero padding. 

In the last two graphs at the bottom of Figure 6.19 we find a section of the surface 
of the wavelet coefficients for two scales (32 and 1). For the scale a = 1 discontinuities 
are precisely localized in time, despite the size of the wavelet support. On the other 
hand, for a large scale (a = 32), the localization is much worse: for example, the 
singularity in t = 500 influences coefficients for the entire interval [420, 580]. 

 

   

Figure 6.19. Continuous analysis with the 8th derivative of the Gaussian 

a = 32 

a = 1 
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6.4.2. Regularity analysis  

6.4.2.1. Locating a Hölderian singularity 

The analyzed signal is the sum of a Gaussian and a signal presenting a reflection 
point in 0 0.7x =  (see Figure 6.20). This Hölderian singularity2 is of exponent 0.4. 
More specifically: 

( )
( )2128 0.3 0.40.7xf x e x Ax B− −= − − − −   

The values A  and B  are such that ( ) ( )0 1 0f f= = . The function is thus 
very regular except at the reflection point 0x . 

 

Figure 6.20. Continuous analysis of a Hölderian singularity  

                              
2 The function g  is Hölderian of exponent α in 0x , if there is a constant C  such that: 

( ) ( )0 0g x g x C x x
α− ≤ − . 
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We perform an analysis for the scales varying from 1 to 128 with the Haar 
wavelet. The examination of the coefficients colored by absolute value, highlights 
two points: 

– to the left of 0.4 a phenomenon appears as soon as the scale is sufficiently 
large, becoming very visible starting from scale 16. However, nothing is detectable 
for the small scales in this zone, which therefore does not contain singularities. The 
visible phenomenon is the reflection of the changes of inflection of the curve; 

– to the right the singularity appears starting with the small scales and is 
propagated following a cone of influence of the coefficients with vertex 0 0.7x = ; 

In fact, a more precise analysis of the Hölderian regularity of the singularity can 
be carried out by suitably standardizing the coefficients. 

6.4.2.2. Analysis of the Hölderian regularity of a singularity 

Let us come back to the preceding analysis, but this time representing the 
normalized coefficients injecting the exact Hölder exponent of the singularity, here 

0.4α = : 

( )
( )

0.5 0.4

,
,

fC a b
R a b

a +
=  

The exponent 0.5  comes from the expression of the coefficients ( ),fC a b . 
Indeed: 

( ) ( ) ( )1
,f

t b
C a b f t dt

a a
ψ

−
= ∫R  

By a changing of variable 
t b

y
a

−
=  we then obtain: 

( ) ( ) ( ) ( ) ( )[ ] ( ),fC a b a f ay b y dy a f ay b f b y dyψ ψ= + = + −∫ ∫R R  

The second equality comes from 0ψ =∫ . In this form we can take the 

Hölderian nature of f  into account and the exponent 0.5  stems from a  in the last 

equality. 
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The coefficients ( ),R a b  are colored so that the smallest ones appear light and 
the largest ones are dark. In the last diagram of Figure 6.21 the curves ( , )a R a b→  
are represented for scales 2, 4, 8, 16, 32, 64 and 128. 

We note that for the maxima, the minima and the inflection points, as well as for 
all other points, except for the point 0 0.7x = , the ratio ( ),R a b  tends to 0 when 

0a → . Is this behavior stable when we change the wavelet? 

Let us illustrate this point (Figure 6.22) by replacing the Haar wavelet that has a 
“small” support by the “Mexican hat” (2nd derivative of a Gaussian) whose effective 
support is “larger”. 

 

Figure 6.21. Continuous analysis with the Haar wavelet 

The curves obtained for both wavelets are very different but the property 
“ ( )

0
, 0

a
R a b

→
iiiiiiif , except in 0b x= ” remains valid. Moreover, as we can note in 



190     Wavelets and their Applications 

the two preceding analyses, the ratio ( )0,R a x  is almost constant for all the scales. 

The local Hölderian regularity of a function is linked to the local behavior of the 
continuous wavelet transform. Thus, in the neighborhood of 0x  we have: 

0

0

( ) ( )f x f x
Cte

x x
α

−
≈

−
  is almost equivalent to: 

0

0.5

( , )fC a x
a Cte

a α+→ ≈  

We can illustrate (Figure 6.23) this theoretical result by analyzing the same 
function using the 6th derivative of a Gaussian, on a more restricted scales band 
(here a  varies from 1 to 64). 

 

Figure 6.22. Continuous analysis with the “Mexican hat” 
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color scale from MIN to MAX  

 

Figure 6.23. Continuous analysis with the 6th derivative of a Gaussian 

On the surface (Figure 6.24) obtained by building a 3D representation of the 
coefficients we note that for the position 0 0.7x =  the watershed following the 
scales, i.e. the curve ( )0,a R a x→ , is quite parallel to the dotted line 0.02z = . 

time (or position) b scale a

Scale of colors from MIN to MAX

Normalized coefficients for

 

Figure 6.24. 3D representation of the continuous analysis with the 6th derivative of a Gaussian 
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6.4.2.3. Study of two Hölderian singularities  

What happens when two singularities of different Hölder exponents are present? 

The analyzed signal is the sum a Gaussian and a signal presenting two Hölderian 
singularities (see Figure 6.25). The first one is of exponent 0.2 and the second one of 
exponent 0.6.  

More precisely: 

( )
( )2128 0.5 0.6 0.22 0.8 2 0.2xf x e x x Ax B− −= − − − − − − . 

The values A  and B  are such that ( ) ( )0 1 0f f= = . 

 

Figure 6.25. Sum of a Gaussian and a signal with two Hölderian singularities 

We visualize the coefficients obtained by normalizing them in two different 
ways: 

– the first (Figure 6.26), adapted to the singularity of exponent 0.2, suppresses 
the coefficients related to the other singularity; 

– the second (Figure 6.27), adapted to the singularity of exponent 0.6, strongly 
amplifies the coefficients related to the first singularity. In order to improve 
visualization, the coefficients in the neighborhood of the first singularity were 
removed. 
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Figure 6.26. Visualization of the normalized continuous transform: 
0.5

( , )fC a b

a +0.2
 

The positions and the exponents of the two Hölderian singularities are well 
detected. Let us note that the position of the singularities may be located for the 
majority of wavelets. On the other hand, the value of the Hölder exponent requires 
more efforts and is not immediately readable. For more details see [DAU 92] p. 45 
and [HOL 90]. 

 

Figure 6.27. Visualization of the normalized continuous transform: 
0.5

( , )fC a b

a +0.6
 

6.4.3. Analysis of a self-similar signal 

The analyzed signal is the “devil’s staircase” associated with the triadic Cantor 
set (see the top part of Figure 6.28). It is an interesting signal because it is exactly 
self-similar. 
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Figure 6.28. Wavelet analysis of “devil’s staircase” 

The construction principle is as follows we start with the interval [ ]0,1 , which 

we cut into three equal intervals and we then associate the value of 1

2
 to the points 

of the medium segment 1 2
,

3 3
⎡ ⎤
⎢ ⎥
⎣ ⎦

. Once again we apply the split to the two extreme 

segments, and we then associate values 
2

1

2
 and 

2

3

2
 to the two new medium 

segments: 1 2
,

9 9
⎡ ⎤
⎢ ⎥⎣ ⎦

 and 7 8
,

9 9
⎡ ⎤
⎢ ⎥⎣ ⎦

 respectively. We apply the same process recursively to 

the four remaining segments. 

We thus obtain a function defined everywhere on [ ]0,1  except for a set of points 
of zero measure, called the triadic Cantor set, to which we extend by continuity. The 
result is a continuous function in [ ]0,1  called “devil’s staircase”, which is derivable 
everywhere apart from the Cantor’s set. Then, in order to obtain the signal to be 
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analyzed, we take a number in the form of 3 1K +  with a sufficiently large K   and 
we sample the function obtained previously. 

We perform the wavelet decomposition of this signal by the second derivative of 
the Gaussian, which is symmetric, for the scales between 1 and 300. In Figure 6.28 
we find the wavelet coefficients that are colored by associating two colors with the 
absolute values of the coefficients: black for a zero value and white for other values. 

In this case it is the zero values of the wavelet coefficients that carry information. 

We can note an astonishing repetition of identical patterns: the self-similar 
structure of the signal is easily read for wavelet coefficients. The junction patter with 
three “legs” is repeated along the scales. 

The slight difference in symmetry, visible for the position 1,800 and scales 
above 180, is due to the edge effects. 

If we zoom in on the left part of the preceding figure (see Figure 6.29), we can 
specify this first visual impression.  

 

Figure 6.29. Wavelet analysis of the “devil’s staircase” (zoom) 
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If one looks at the scales corresponding to the junctions of the minima lines, 
which are in black in the figure, we find the following scales: 25a = , then 

75a = , and 225a = . They result from each other by multiplication by 3, which 
reflects the rule of signal construction in a spectacular way. 

Many works deal with the analysis of deterministic or random generalizations of 
such situations. The former describe geometrical self-similarity as here and, more 
generally, what we will call the fractals. The latter relate to the self-similarity in 
distribution, such as for example the fractional Brownian processes. The analysis of 
such situations is made by means of the processing of maxima lines of the wavelet 
decompositions (see for example the method known as MMTO for wavelet 
transform modulus maxima in [ARN 95]). 



Chapter 7 

Signal Denoising and Compression 

7.1. Introduction 

Two of the great successes of wavelets are signal and image denoising and 
compression, which are often regarded as particularly difficult problems. This 
chapter tries to explain the reasons for this, by focusing on one-dimensional signals. 

Denoising and the estimation of functions based on wavelet representations lead 
to simple and powerful algorithms that are often easier to fine-tune than the 
traditional methods of functional estimation. Signal compression constitutes a field 
where wavelet methods also appear very competitive for reasons fundamentally 
close to those that make wavelet-band denoising work. Indeed, the signals that we 
are interested in have in many cases very sparse wavelet representations and are 
very well represented using few coefficients. Here we deal with denoising followed 
by signal compression, exposing the first topic in greater detail.  

First of all, we tackle the principle of denoising by wavelets, then a statistical 
introduction to the thresholding methods and finally some examples. We initially 
focus on a model of form ( )

t tY f t ε= + . This model is very simple and the 
assumptions about noise are very strong. Fortunately, the “attraction basin” of 
denoising methods is much broader. Thus, we examine two extensions of this model 
through examples: in the case of noise with multiple rupture charges of the variance 
and in that of a real signal where the noise structure is unknown. 

We then go further on the use of the translation invariant transform (introduced 
in Chapter 3) which in certain situations makes it possible to improve the results 
obtained by means of the preceding methods. 



198     Wavelets and their Applications 

Moreover, we are interested in two traditional questions in statistics: estimating 
the probability density function and estimating the regression function in the random 
design case. For these two problems we outline a way of constructing estimators on 
the basis of wavelets enabling the use of the DWT.  

Lastly, we briefly touch upon the main ideas concerning compression. The 
problem of compression is often synonymous with image compression, whose 
applications are particularly interesting and developed in Chapter 8. For example, 
wavelets are used in the new image compression standard JPEG 2000. Nevertheless, 
applications for signals are numerous, in particular the compression of audio signals. 

The chapter finishes with some bibliographical comments. 

7.2. Principle of denoising by wavelets 

7.2.1. The model 

Denoising consists of restoring a useful signal from observations corrupted by an 
additive noise. 

The simplest statistical model of denoising is as follows: 

( ) , 1, ,t tY f t t nε= + = A  [7.1] 

where f  is an unknown function, the variables ( )1t t n
Y ≤ ≤  are observed and 

( )1t t n
ε ≤ ≤  is a centered Gaussian white noise with an unknown variance 2σ . We 

then have to reconstruct the signal ( )( )1 t nf t ≤ ≤  or to estimate the function f  

solely on the basis of observations. 

7.2.2. Denoising: before and after 

The problem of denoising is easy to understand by starting with an example. At 
the top of Figure 7.1 we see a real noisy signal. 
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Figure 7.1. Denoising by wavelets: before and after 

The denoised signal by wavelets is in the lower part. It is obviously well 
denoised, both in the zones where the underlying signal is smooth, and in the zone 
around the position 2,900 where the signal presents irregularities, abrupt variations. 
The changes in the level of noise around the positions 2,400 and 3,450 are well 
absorbed by the process. Traditional methods are incapable of such an adaptation in 
time. 

7.2.3. The algorithm 

The basic algorithm of denoising is very simple and contains three steps: 

− decomposition; 
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− selection or thresholding of the coefficients; 

− reconstruction. 

Starting with the signal, we first decompose it over an orthogonal wavelet basis 
using the discrete transform. Then we select a part of the coefficients through 
thresholding and we keep the coefficients of approximation of a suitably chosen 
level intact. Lastly, using thresholded coefficients we reconstruct a signal by 
applying the inverse discrete transform to them. The signal obtained in this manner 
is the denoised signal. 

7.2.4. Why does it work? 

Let us quote some arguments which help us understand the effectiveness of these 
methods; they will be supported throughout the chapter: 

− wavelet decomposition is additive, consequently, the analysis of Y  is equal to 
the sum of the analyses of the signal f  and of the noise ε ; 

− if noise ε  is supposed to be white, then the wavelet coefficients on all the 
scales are white noises with the same variance; 

− useful signals are, in many cases, smooth enough, except in rare locations like 
the beginning and the end of transitory phenomena, or ruptures, for example. This 
renders the decomposition of f  by wavelets very sparse and is then very well 
represented by the coefficients of a rather rough approximation to which some large 
detail coefficients are added; 

− if the irregularities of the signal generate larger coefficients than the scale of 
noise, the process of selection retains the coefficients related to the signal, provided 
that we can suitably estimate this scale; 

− the analysis is local and, consequently, thresholding leads to a local 
regularization of the original signal. 

7.3. Wavelets and statistics 

Numerous papers cover in detail the vaster topic of function estimation. 
Wavelets have given a boost to the functional estimation techniques. They are 
particularly effective when the functions that we wish to be estimated are coded 
parsimoniously on the chosen wavelet basis, i.e. when few coefficients are enough 
to describe each function to be estimated. 

These techniques are used to estimate functions of different natures: probability 
density, spectral density, regression function, hazard function. Moreover, the 
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estimators benefit from the extraordinary algorithmic speed (of linear complexity) of 
the discrete decomposition. 

7.3.1. Kernel estimators and estimators by orthogonal projection 

Denoising is a particularly interesting specialization of a more general problem 
known in statistics as function estimation. Traditional methods of estimation of the 
f  function in the model [7.1] are of two types.  

On the one hand, we have the local methods based on the kernel leading to 
estimating ( )f x  by a local average of the values of tY  for t  close to x  using a 
regularizing kernel K , for example, the Gaussian density function, and a temporal 
window δ : 

( ) ( ) ( )ˆ / t
t s

x t x s
f x K K Y

δ δ
⎡ ⎤− −⎢ ⎥=
⎢ ⎥⎣ ⎦

∑ ∑
 

On the other hand, we find the orthogonal projection methods, which suppose 
that the function f  belongs to a space F , for which we have an orthogonal basis 

( )m me , so that f  is written as m m
m

f eγ= ∑ . The estimator is deduced from it by 

estimating the mγ  by ˆmγ  using tY : 

ˆ ˆm m
m

f eγ= ∑
 

In the formulae above, f̂  indicates the estimator of f . Hereafter, all the 
estimated quantities will be noted in the same way (not to be confused with the 
Fourier transform). 

7.3.2. Estimators by wavelets 

A first idea, present very early in works using wavelets, consists of proposing 

estimators of the form , ,
ˆ ˆ

J k J k
k

f β ϕ= ∑  for finite energy functions f , using only 

the scaling function ϕ . They are at the same time kernel estimators (taking for K  

the wavelets kernel given by ( ) ( ) ( ),
k

K x y x k y kϕ ϕ= − −∑ ) and estimators by 
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orthogonal projection (taking ,j kϕ  for me ). They have the aim of estimating f  by 

the estimate of the approximation of f  of level J. 

 

A second idea consists of supplementing this estimate by additional details and 
considering estimators of the following form:  

0

, , , ,
ˆ ˆ ˆ

J k J k j k j k
k J j J k

f β ϕ α ψ
≤ ≤

= +∑ ∑ ∑
 

by carefully choosing ,ˆ
j kα  we threshold the wavelet coefficients of the signal Y  

(see the following section). That enables the desired adaptivity. 

7.4. Denoising methods 

In this section, we provide some theoretical elements concerning the methods of 
denoising while dwelling on the underlying ideas rather than on the detail of the 
impressive list of available strategies adapted to neighboring contexts. A long article 
of Antoniadis, Bigot and Sapatinas [ANT 01] provides a very complete assessment 
of these techniques and presents an extensive comparative study of these many 
strategies; we can refer to it to get some very beneficial information. 

Let us consider an orthonormal wavelet basis on the interval obtained by 
gathering timescale atoms without distinguishing them by the usual double indexing. 
It is noted 1( )i i ng ≤ ≤ . We decompose using this basis: 

( ) , 1, ,t tY f t t nε= + = A
 

Wavelet decomposition being additive, the analysis of Y  is equal to the sum of 
the analyses of the signal f  and of the noise ε , the coefficients are then written: 

, 1, ,i i id w i nθ= + = A  [7.2] 

with a link which can be expressed by means of an orthogonal matrix W associated 
with the discrete wavelet transform: d WY= , Wfθ =  and w W ε= . 

NOTE 7.1.– the DWT transforms n given elements in the temporal field into n  
coefficients in the wavelet domain. The transform is linear and can be expressed by 
means o an n by n matrix, noted here W . Depending on the hypotheses concerning 
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the treatment of edge problems, this matrix can be orthogonal or “nearly orthogonal” 
(see [WAL 02] p. 232). Here it is presumed orthogonal and we note the functions of 
the underlying wavelet basis as ig . 

Since the basis to which we are projecting is orthonormal, the noises ε  and w  
have the same probabilistic properties. Indeed, as w W ε= , w inherits the Gaussian 
and centered nature of ε  and:  

2cov( , ) cov( , )T T T Tw w Ew w E W W E Iε ε ε ε ε ε σ= = = = =
 

We seek an estimator f̂  of f  that minimizes the risk defined by the mean 
square error: 

( ) ( ) ( )( )22

1

ˆ ˆ ˆ( , )
n

t

R f f E f f E f t f t
=

⎛ ⎞⎟⎜= − = − ⎟⎜ ⎟⎟⎜⎝ ⎠∑  [7.3] 

Due to the orthonormality of the transformation we also have ˆ ˆ( , ) ( , )R f f R θ θ= . 

7.4.1. A first estimator 

The first idea, traditional in signal processing, is diagonal attenuation [MAL 98]. 
The estimator of the corresponding f  consists of modifying the decomposition of 

1

n

t t
t

Y d g
=

= ∑  by attenuating the coefficients id  using a deterministic sequence ia . 

The estimator f̂  then has the following form:  

1

ˆ
n

i i i
i

f a d g
=

= ∑  [7.4] 

We choose ia  by minimizing ˆ( , )R f f , a criterion to which we will assign a form 
useful to the discussion. We have:  

( ) ( )2 2 2

1 1

ˆ ( )
n n

i i i i i i i i
i i

E f f E g d a g E d aθ θ
= =

⎛ ⎞⎟⎜− = − = −⎟⎜ ⎟⎟⎜⎝ ⎠∑ ∑
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however: 

2 2

2 2 2 2

( ) ( ( ) )

(1 ) 2 (1 )

i i i i i i i

i i i i i i i i

E d a E w a

a a Ew a a Ew

θ θ θ

θ θ

− = − +

= − + − −  

The noise iw  being centered ( 0iEw = ) and of variance 2σ ( 22
iEw σ= ), we 

have: 

( ) ( )2 22 2 2

1 1

ˆ 1
n n

i i i
i i

E f f a aθ σ
= =

− = − +∑ ∑  [7.5] 

This form makes it possible to calculate the optimal solution given by 
2 2 2/( )i i ia θ θ σ= +  and leads to âf  such that: 

( ) ( )2 2 2 2 2

1

ˆ /
n

a i i
i

E f f σ θ θ σ
=

− = +∑
 

Obviously, this solution is impossible to implement since ia  depends on iθ , 
which are the coefficients of the unknown function f . 

7.4.2. From coefficient selection to thresholding coefficients  

The second idea consists of selecting certain coefficients and eliminating the 
others, i.e. adding the constraint { }0,1ia ∈  in the preceding section. 

 

Let us denote again the associated estimator by f̂ . If we denote by 

{ }{1,2,..., } | 1iI i n a= ∈ =  the set of selected indices, expression [7.5] makes it 

possible to write the objective criterion in the following form: 

( ) ( )
2 2 2 2 2ˆ

i i
i I i I i I

E f f card Iθ σ θ σ
∉ ∈ ∉

− = + = +∑ ∑ ∑  [7.6] 

In other words, selecting i  in I  costs 2σ  and excluding it costs 2
iθ , therefore, 

( )2ˆE f f−  is minimal if only those indices for which iθ σ≥ appear in I . 

This means that the optimal selection strategy is a thresholding of the coefficients. 
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Thresholding a coefficient u  means that it is kept if u ≥  threshold and that it is 

replaced by 0 otherwise. For this strategy, the cost is: 

( ) ( )2 2 2

1

ˆ min ,
n

s i
i

E f f θ σ
=

− = ∑  [7.7] 

where ŝf  is the thresholded estimator. 

NOTE 7.2. 

– Nothing in the above section depends on the fact that the basis 1( )i i ng ≤ ≤  is a 
wavelet basis. The interest of wavelets, within this framework, stems from their 
capacity to represent f  using very few significantly non-zero coefficients. However, 
if the basis is orthonormal, the energy of f  is equal to the sum of the squared 
wavelet coefficients. Consequently, the energy of f  concentrates in the few non-
zero coefficients of f , which thus have large absolute values. The idea of 
thresholding consists of preserving the coefficients of Y  associated with the 
coefficients of f  that are larger than the characteristic scale of the noise. 

– The key point is the least squares criterion. Here we find the strategies of 
selection of variables in linear regression by means of penalized least squares. 

– From equation [7.6] we deduce that the error committed by the estimator ˆ
Mf , 

obtained by preserving M  coefficients of the largest absolute value, has the 

following form: ( )2 2 2ˆ ˆ
M ME f f f f Mσ− = − + ; that is, the sum of the two 

terms, an approximation error plus a term related to random fluctuations. Starting 
with this penalized criterion, traditionally used in statistics, also makes it possible to 
obtain thresholding as the solution. 

– We demonstrate that ( ) ( ) ( )2 2 2ˆ ˆ ˆ2a s aE f f E f f E f f− ≤ − ≤ − , 

meaning that the optimal errors of the estimators âf  and ŝf  are of the same order. 
Ů 

For the same reasons as at the end of the preceding section, the strategy of 
thresholding is not applicable. We have here, in fact, an ideal estimator, which is 
called an “oracle” with the ability to tell us, knowing θi, the coefficients to be 
preserved. The performance of this procedure is a useful comparison base for the 
estimators which we will implement. 
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7.4.3. Universal thresholding 

The strategy finally adopted consists of thresholding the coefficients of Y  not 
according to the coefficients of f  with the threshold σ , but directly with a 
threshold T  suitably determined according to the noise model. 

In the case of Gaussian white noise, the estimator f̂  obtained by preserving only 

such coefficients of Y  that 2 log( )id nσ>  and by replacing the others with 0 is 

satisfactory since it leads to almost as good results (up to a logarithmic factor) as the 
“oracle”. Indeed, it is shown that:  

( ) ( ) ( )( ) ( )( )2ˆ ˆ ˆ, , 2 log 1 ,s sR f f R f f n R f fσ≤ ≤ + +
 

where the name of the universal threshold given by Donoho and Johnstone to 
( )2 logT nσ=  is derived from. But where does its value come from? 

A centered Gaussian noise ε  with a variance 2σ  is not bounded, but we know 

that ( ){ }
1

lim max 2 log 0i
n i n

P nε σ
→∞ ≤ ≤

> = , in other words we can consider that 

essentially ( )2 logi nε σ< . 

Thus, the procedure is interpreted as the setting of all the coefficients, which 
could be ascribable to noise, to zero. Sometimes it also proves to be too selective in 
practice and other thresholds have been developed that do not exhibit this drawback. 

7.4.4. Estimating the noise standard deviation 

The threshold depends on σ , which gives the scale of the noise. How can σ , 
which is unknown in practice be estimated? 

In the context of model [7.1] we have many estimators, but we may benefit from 
wavelet decomposition, which provides an elegant estimator based on the following 
idea.  

The decomposition of Y  with ( )
t tY f t ε= +  is equal to the sum of the 

analyses of the signal f  and of the noise ε . Noise ε  is white, therefore its 
coefficients on all the scales are white noises of the same variance since the wavelets 
are orthonormal. Lastly, in general, the decomposition of f  is very sparse and only 
some large level 1 detail coefficients (denoted 1cd ) are not ascribable to ε . 
Consequently, the level 1 detail coefficients are primarily a white noise with 
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variance 2σ . It is then enough to use a robust estimator, i.e. not sensitive to large 
values of f , of the standard deviation of the level 1 detail coefficients to estimate 
σ . In the Gaussian case the estimator has the form: 

( )( )1ˆ / 0.6745médiane cd iσ =
 

Here we exploit the relation between the standard deviation and the median for 
this distribution of errors. Indeed, for l  independent Gaussian centered random 
variables 1 2, ,..., lX X X  with a standard deviation σ , we have  

E(median(|Xi|, 1 ≤ i ≤ l)) ≈ 0.6745σ. 

7.4.5. Minimax risk 

More light is shed on the performances of this type of procedure by the 
traditional minimax theory in the context of the function estimation in statistics. We 
seek estimators with good properties for very broad classes of functions. Let us note 
F  the set of functions of a space F with a norm smaller than M, typically balls of 
Sobolev, Hölder or Besov spaces [TRI 92]. 

Within this framework we measure the quality of the estimator by the worst 

performance reached over the functions of F : ( )ˆsup ,
f

R f f
∈F

. We then seek 

estimators whose risk ( )ˆsup ,
f

R f f
∈F

 is close to the minimum risk defined naturally 

by ( )
ˆ

ˆinf sup ,
f f

R f f
∈F

 and called minimax risk.  

We have results showing that the estimator by thresholding introduced 
previously is minimax up to a logarithmic factor:  

( ) ( ) ( )
ˆ ˆ

ˆ ˆ ˆinf sup , sup , . log( ). inf sup ,
f ff f f

R f f R f f C n R f f
∈ ∈ ∈

≤ ≤
F F F  

for very broad classes of functions F  including Sobolev, Hölder and Besov spaces 
[HAR 98]. 

This type of result is valid for many variants of estimators by wavelets and for 
various loss functions that are not necessarily quadratic. It is all the more remarkable 
since it requires only a limited a priori knowledge of the regularity of the estimated 

median 
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function, contrary to the traditional methods mentioned in the preceding section. 
Functional spaces, such as Besov spaces, are explored systematically and play a 
particular role. They make it possible to tackle functions that are rather irregular 
locally and may present patterns contrasting with regular zones, irregular zones, fast 
local variations and ruptures. The estimation can be carried out without knowing the 
global regularity of the function and, in this sense, it adapts to the unknown 
regularity. 

7.4.6. Further information on thresholding rules 

There are many variants of these estimators based on wavelet coefficient 
thresholding (see the references quoted in the introduction and the summary paper of 
[ANT 01]). They differ primarily by: 

− strategy of thresholding: global, level by level, local in time, by blocks; 

− type of thresholding: hard, soft and other regularizations. An ingredient used 
by the basic alternatives is the use of “soft” thresholding instead of “hard” 
thresholding used previously (see Figure 7.2). The former is defined by: for a real 
y , δhard, λ(y) = y, if y λ> , and 0, if not. Soft thresholding makes this function 
continuous by shrinking the kept coefficients. It is defined by: δsoft, λ(y) = (y – 
sign(y) λ), if y λ> , and 0, if not. All else being equal, it leads to smoother 
estimators, less sensitive to the noise; 

– choice of the value of thresholds; 

− strategy of construction of the estimator: 

- it can be direct or Bayesian. In this latter case we formulate hypotheses a 

priori on the distribution of coefficients. Typical modeling consists of considering a 
mixture of populations reflecting the idea that some coefficients are due to the noise 
and others to the signal. We deduce the threshold on the basis of the average loss a 

posteriori. It can be shown that soft and hard thresholdings may be interpreted from 
a Bayesian point of view by suitably selected loss functions. Of course, other 
thresholding procedures stem from Bayesian strategies, 

- it may be based on the search for (less robust) minimax estimators or just 
minimax with a logarithmic loss, 

- it may be adapted to various loss functions and a particular choice of F . 
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 (a) 

 (b) 

 (c) 

Figure 7.2. (a) original signal, (b) hard thresholding and (c) soft thresholding 

7.5. Example of denoising with stationary noise 

Let us take the simple example of the Doppler signal making it possible to 
clearly capture the spirit of the technique of denoising by wavelets. In Figure 7.3 we 
find the signal used for estimation and, in Figure 7.4, the analysis of the signal 
observed which is a noisy version of the previous one. 
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Figure 7.3. A Doppler signal 

Figure 7.4 is organized in two columns: 

− in the first column we see the noisy signal (s) and then, below, approximations 
from level 5 (the coarsest, a5) to level 1 (the finest, a1); 

− in the second column, at the top we see a colored version of the wavelet 
coefficients from level 1 to 5 (cfs), followed by the noisy signal and then, in the 
bottom part, the details from level 5 (the coarsest, d5) to level 1 (the finest, d1). 

The wavelet used is an almost symmetric compactly supported wavelet of order 
4, noted sym4. The denoising strategy consists of: 

− preserving such an approximation that the noise is absent or very attenuated (a4 
or a5); 

− supplementing this approximation by the pieces of finer details clearly 
ascribable to the useful signal, rejecting the parts regarded as originated by the 
noise. 

It is precisely what the methods of denoising by wavelets do automatically, in 
particular the universal thresholding, which is the most widespread method. 

In the first column of Figure 7.5 we see the wavelet coefficients from level 5 to 
level 1. To make them more readable they are repeated 2k

 times at the level k  
(which explains the gaps particularly visible for 3k > ). In each of these graphs we 
note the presence of two horizontal dotted lines: the coefficients inside the band are 
zeroed by denoising.  

In the second column the noisy signal s is superimposed on the denoised signal. 
Below there are two graphs: a colored version of the wavelet coefficients from level 
1 to 5 of the original disturbed signal, followed by the counterpart for the 
thresholded wavelet coefficients, from which the denoised signal is reconstructed. 
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Figure 7.4. Wavelet analysis of a noisy Doppler 

Let us see through this example how denoising works. The coefficients of 
approximation are completely preserved, which initially leads to introducing the first 

component of the denoised signal, which has the form: 5, 5,
ˆ ˆ
d k k

k

A β φ= ∑ . The 

estimated coefficients 5,
ˆ

kβ  are simply the coefficients obtained by decomposition of 

the initial signal. The approximation ˆ
dA , which is not represented directly in Figure 

7.5, corresponds to the approximation a5 of Figure 7.4. 

Only several larger wavelet coefficients (i.e. detail coefficients) are preserved; 
the others are replaced by zeros. We may look at the coefficients before and after 
this operation of thresholding in the second column to note the sparsity of preserved 
coefficients. We thus obtain the second component of the denoised signal, which has 

the form , ,
1 5

ˆ ˆ
d j k j k

j k

D α ψ
≤ ≤

= ∑ ∑ . 
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Figure 7.5. Denoising by wavelets of a Doppler signal 

The estimated coefficients ,ˆ
j kα  are simply the thresholded version of the detail 

coefficients obtained by decomposition of the initial signal. The denoised signal is 

then ˆ ˆ
d̂ d ds A D= + . 

It is visible that the result obtained at the top on the right has a good quality, 
except for the very beginning of the signal, which oscillates too much on a small 
scale with small fluctuations compared to those of the noise. 

7.6. Example of denoising with non-stationary noise 

The model [7.1] is very simple, even elementary, and the assumptions about the 
noise are very strong. Fortunately, the “attraction basin” of the denoising methods is 
much broader. We examine two extensions of this model using examples: 

− case of noise presenting multiple change-points of the variance; 

− case of a real signal where the noise structure is unknown. 
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7.6.1. The model with ruptures of variance 

We always suppose that ( ) , 1, ,t tY f t t nε= + = A , but the standard 

deviation of tε  is no longer necessarily constant and may depend on t . More 

precisely, we allow the existence of time instants 

0 1 11 ... ...k k Kt t t t n+ += < < < < < =  defining 1K +  time interval of 

1( , )k kt t + , inside of which 2
t kEε σ= . Obviously, the number of rupturesK , the 

instants of rupture { }kt  and the standard deviations { }kσ  are unknown.  

 

Figure 7.6. Soft universal thresholding for noisy block signal 

In Figure 7.6 universal thresholding is applied to a signal made up of a 
succession of blocks disturbed by Gaussian white noise, whose standard deviation 
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changes at positions 200 and 600. The examination of the denoised signal and the 
residuals (see Figure 7.7) clearly shows an over-smoothing, in particular, in the 
interval (200, 600), where the edges of the blocks are badly recovered. 

 

Figure 7.7. Residuals after soft universal thresholding for noisy blocks signals 

The use of hard thresholding improves the reconstituted edges a little but, 
basically, the problem persists. It is therefore necessary to seek an adapted strategy 
making it possible to take into account change-points of the variance and not to 
settle for the basic procedure resulting in under-smoothing the very noisy parts and 
over-smoothing those which contain little noise. 

7.6.2. Thresholding adapted to the noise level change-points 

The problem of estimating f  with wavelets is tackled by a strategy close to that 
used in the case of the basic model. However, here the thresholding of the 
coefficients of Y is carried out interval by interval, after identifying kt  and 
estimating kσ  needed to calculate the thresholds. In other words, the only important 
modification is the change detection stage. Here we describe an algorithm 
implemented by the authors in their wavelets software [MIS 00]. The detection of 
change-points is performed thanks to an observation already made during the 
estimation by wavelets of the noise variance: the detail coefficients of level 1 
primarily consist of white noise having the same characteristics as ε . It is then 
enough to apply an algorithm of detection of variance changes to this new signal. 
We then use the work of Lavielle [LAV 99] which, through dynamic programming, 
enables us to obtain the best configuration of kt  for any fixed number K of ruptures. 
Finally, to select the best K we proceed by penalization, i.e. we minimize a criterion 
which is the sum of two terms: the first of adjustment decreasing with K and the 
second of penalty growing with K. 

In Figure 7.8 we visualize the change instants found through this procedure on 
the basis of detail coefficients. The clear break points introduced here are clearly 
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highlighted by the procedure. Besides, they are easy to detect with the naked eye, 
but the determination of kt  and the thresholds requires using the algorithm. 

 

Figure 7.8. Interval-dependent thresholds according to the changes of variance 

If we apply denoising by interval thresholding, we obtain the result presented in 
Figure 7.9. This result is much more satisfactory than that obtained by applying 
global thresholding, as seen, for example, around position 400. 

 

Figure 7.9. Thresholding adapted to noise variance changes 
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Figure 7.10. Residuals after thresholding adapted to noise variance changes 

7.7. Example of denoising of a real signal 

A second natural extension of the model [7.1] is to make it possible to take into 
account much less precise noise structure (unknown distribution, time dependence). 
Two situations are considered: 

− noise unknown but homogenous in variance by level of scale; 

− noise unknown and non-homogenous in variance at each level. 

Examples illustrate the robustness of the denoising algorithms by thresholding 
and show the capacity of the techniques to be adapted to much more general 
contexts, in order to deliver results that are undoubtedly not optimal but remain 
largely acceptable. 

7.7.1. Noise unknown but “homogenous” in variance by level 

It is the denoising by wavelets of an electrical load consumption signal. This 
problem is difficult since the noise is of an unknown nature but the homogenity of 
the size of the noise by level is easily distinguished from the detail signals of Figure 
7.11. 

The method employed here is inspired by the previous situation adapting the 
thresholding to the level so that we require nothing but the homogenity of the noise 
by level. Thresholding is carried out as in the basic model, but the coefficients are 
selected level by level due to a threshold, which does not depend on the global σ̂ , 
but on ˆjσ  estimated by level. To estimate jσ  we proceed in the same manner as to 
estimate σ , but considering the level j  detail coefficients.  

Whilst examining the first column of Figure 7.11 we see that the method 
considers all coefficients from levels 1 to 3 as ascribable to noise and they are thus 
all zeroed.  
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On the other hand, for levels 4 and 5, the procedure primarily selects wavelet 
coefficients in the zone around position 400, enabling an excellent restitution of the 
abrupt signal fluctuations. 

 

Figure 7.11. Electrical consumption signal (1) – unknown but homogenous noise 

7.7.2. Noise unknown and “non-homogenous” in variance by level  

Let us now examine denoising by wavelets of another portion of the same 
electrical load consumption signal where two difficulties coexist: the noise is of 
unknown nature and the size of the noise is non-homogenous in time. This is easily 
seen in Figure 7.12. The strategy to be adopted is, naturally, to apply simultaneously 
the trick by taking into account the variance changes (seen in the previous section) 
and the level-dependent thresholding. Here is the very satisfactory result obtained. 
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Figure 7.12. Electrical consumption signal (2) – noise with variance changes  

7.8. Contribution of the translation invariant transform 

The discrete wavelet transform (DWT) of a signal of length n  is not translation 
invariant: the analysis of a translated signal is not equal to the translation of the 
signal analysis. This is true even for a periodized signal (DWT with periodic 
extension; see Chapter 3). The detection of singularities (alignment, amplitude of the 
largest coefficient) can depend on the arbitrary choice of the origin.  

A manner of restoring the translation invariance is to perform a redundant 
analysis and then to take averages. For a signal X  of length 2J  it consists of 
calculating not just one decomposition but 2J  different decompositions 
corresponding to all the circular translations of X . Each of these transformations is 
invertible but none is translation invariant. On the other hand, if we take the average 
of the obtained decompositions, we obtain the desired property of invariance. 
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Moreover, these transforms are easy to obtain; it suffices to reuse the DWT 
scheme and to remove the decimation phase (for more details see Chapter 3). 

The main applications of this transformation are analysis [NAS 95] and, 
especially, denoising. The idea of translation invariant denoising, introduced by 
Coifman and Donoho [COI 95], consists of carrying out thresholding on each basis 
and taking the average of the obtained denoised signals. There are two competing 
effects present: a better detection of singularities due to taking into account all the 
shifts in the analysis and an effect of more intense smoothing due to the averaging of 
the denoised signals on each basis. A good compromise consists of using quite 
irregular wavelets with a small support and applying hard thresholding. This strategy 
can improve the restitution of the edges and it is also used for denoising images. 

 

Figure 7.13. Translation invariant transform: soft thresholding 

Signal (S) and denoised signal (DS) Denoised signal (DS) 

Residuals = S – DS 

Non-decimated approximation coefficients Non-decimated approximation coefficients 

Non-decimated detail coefficients Non-decimated detail coefficients 
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Figure 7.14. Translation invariant transform: soft thresholding (zoom) 

 

Figure 7.15. Translation invariant transform: hard thresholding 

Signal (S) and denoised signal (DS) 

Residuals = S – DS 

Denoised signal (DS) 

Signal (S) and denoised signal (DS)

Residuals = S – DS 

Denoised signal (DS) 

Non-decimated approximation coefficients Non-decimated approximation coefficients 

Non-decimated detail coefficients Non-decimated detail coefficients 



Signal Denoising and Compression     221 
 

Let us illustrate denoising with an example using the translation invariant 
transform, by applying soft thresholding followed by hard thresholding. We are 
within the framework of the basic model and the analyzed signal is the superposition 
of a succession of blocks and a noise. Let us use the Haar wavelet adapted to the 
shape of the signal. Soft universal thresholding is then applied and we obtain (see 
Figure 7.13) a denoised signal that is suitable but seems over-smoothed around the 
signal discontinuities. 

We can confirm it by examining more closely the residuals around one of these 
discontinuities, for example around position 800 (see Figure 7.14). These residuals 
clearly contain information ascribable to the signal to estimate. 

Now let us apply the same denoising strategy and perform hard thresholding. We 
obtain (see Figure 7.15) a much more satisfactory estimate from the point of view of 
the estimated function, in particular around discontinuities, as well as from the point 
of view of the residuals whose compatibility with a Gaussian white noise is very 
satisfactory. 

7.9. Density and regression estimation 

In this section, we consider two traditional questions of statistics that are 
estimating the probability density function and the regression function. We outline a 
way of constructing estimators using wavelets for these two problems enabling us to 
use the DWT. The idea is to bring these two situations back to the case of denoising 
via a suitable preprocessing. 

7.9.1. Density estimation 

We consider a sample 1 2, ,..., nX X X  of n  independent and identically 
distributed random variables of unknown probability density function ( )h x , 
supposed to be of finite energy. The goal is to construct an estimator ĥ  of this 
density using the data 1 2, ,..., nx x x . 

Among the difficulties is the fact that ix  are not equally spaced. We initially 
present the idea of constructing the estimator, then a “binning” technique that 
simplifies the estimator by a regrouping of measures in classes whose equidistant 
centers facilitate calculation. 
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The function h  can be represented on the wavelet basis constructed using the 
functions ϕ  and ψ  in the following way: 

, , , ,

J J

jJ k J k j k j k J
k j k j

h a d A Dϕ ψ
=−∞ =−∞

= + = +∑ ∑ ∑ ∑  [7.8]
 

To estimate h  it suffices to estimate the coefficients ,J ka  and ,j kd . By 
definition of the coefficients, we have: 

( ) ( )
, ,J k J ka x h x dxϕ= ∫

 

As h  is a probability density function, ,J ka  has a particularly useful 

interpretation: ( ) ( ) ( )( ), , iJ k J kx h x dx E Xϕ ϕ=∫  is the expectation of the 

random variable , ( )iJ k Xϕ . Such an expectation is estimated quite simply by the 

empirical mean: 

( ), ,
1

1
ˆ

n

iJ k J k
i

a X
n

ϕ
=

= ∑
 [7.9] 

In the same way we have ( ) ( ) ( )( ), , , ij k j k j kd x h x dx E Xψ ψ= =∫  
estimated by: 

( ), ,
1

1ˆ
n

ij k j k
i

d X
n

ψ
=

= ∑
 [7.10] 

Using the expression of h  given by [7.8] and replacing the coefficients by their 
estimates given by [7.9] and [7.10], and then by thresholding the estimated detail 
coefficients we obtain an estimator h"  of the form: 

{ },
0

, , , ˆ ,
ˆˆ 1I

j k

J

J k j k j k j kd t
k j J j k

h a dϕ ψ
>= −

= +∑ ∑ ∑"
 [7.11] 
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As in the case of denoising strategies we keep the estimates of the approximation 
coefficients at the level J  and we threshold the detail coefficients estimates. This 
enables us to avoid the oscillations present when all the ,

ˆ
j kd  are kept. 

However, the ix  are not equally spaced and it is impossible to calculate this 
estimator by using the DWT fast algorithm. We may propose an approximation, 
based on a regrouping in classes, making it possible to benefit from the DWT’s 
speed of calculation. 

We introduce a histogram “H  of the values of X  in m  bins of the same width. 

The bin marks are in a vector denoted bX  and we associate with each bin the 

corresponding number of observations gathered in a vector denoted bY . We then 

define “ ( )
( )bY r

H x
n

=  for x  belonging to the bin r . By using “H  we may then 

write: 

( ) ( ) ( )( ) ( )“ ( )
, , , ,

1 1

1 1ˆ
n m

b b
ij k j k j k j k

i r

d X Y r X r c x H x dx
n n

ψ ψ ψ
= =

= ≈ ≈∑ ∑ ∫  

where c  is the binwidth. 

The signs ≈ express the idea that we lose information when the histogram is used 
instead of the iX  values and when the integral is approximated. The last ≈ sign is 

interesting: it means that ,
ˆ
j kd  is, up to a constant, the wavelet coefficient of the 

function “H  associated with the level j  and the position k . A similar result holds 

for  ,Ĵ ka . 

Calculations to be performed on the data transformed in this manner then acquire 
a form, which makes it possible to use the DWT by applying it to the “binned” data 
seen as a signal. 
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7.9.2. Regression estimation 

The problem of estimating the regression function is solved in a similar way. The 
essential differences, obviously, relate to the model: 

( ) , 1, ,i i iY f X i nε= + = A
 

where f  is the unknown regression function, the ( )
1

,i i i n
X Y ≤ ≤  are observable and 

( )
1i i n

ε ≤ ≤  is an unobservable white noise, centered and of variance 2σ . We have to 

estimate the function f  merely on the basis of the observations ( )
1

,i i i n
x y ≤ ≤ . 

The fundamental difference with the case of denoising is that here the iX  are no 
longer deterministic, but are randomly generated according to the unknown 
probability density function h. 

We consider 1 1 2 2( , ),( , ),...,( , )n nX Y X Y X Y
 

of n  independent random pairs 

sampled from the common distribution h. The function .g f h=  is introduced, from 

where we get 
g

f
h

=  with the convention that 
0

0
0
= . 

As previously, we will carry out a “binning” of the values of X  into m  bins. 

Let rn  be the number of observations belonging to the rth bin and let ( )bX r  be its 

center. We then define ( )

( ){ }|

1

j

b
j

r j X bin r

Y r Y
n ∈

= ∑ . 

Let us seek an estimator of f  of the form 
g

f
h

=
""
" , where h"  is the estimator 

provided by a suitably normalized histogram of X . We then use the same technique 
as that used for density estimation: the coefficients of g  are estimated by: 

( ), ,
1

1
ˆ

n

i iJ k J k
i

a Y X
n

ϕ
=

= ∑  and
 

( ), ,
1

1ˆ
n
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i
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We obtain approximations of these estimates by the wavelet coefficients of the 
sequence bY : 

( ) ( )( ), ,
1

1
ˆ

m
b b

J k J k
r

a Y r X r
n

ϕ
=

≈ ∑
 
and ( ) ( )( ), ,

1

1ˆ
m

b b
j k j k

r

d Y r X r
n

ψ
=

≈ ∑
 

which in this situation also allows us to use the DWT. 

Of course, the quality of the obtained estimators is not completely controlled 
since it results from the estimation by wavelets, but applied to data transformed by a 
kind of preliminary estimate (see [HAR 98] pp. 134 and 183). 

7.10. Principle of compression by wavelets 

7.10.1. The problem 

The problem of compression is often reduced to images, whose applications are 
particularly interesting (see Chapter 8). For example, wavelets are used in the new 
image compression standard JPEG 2000 [JPE 00]. 

Nonetheless, the compression of one-dimensional signals is also relevant. Thus, 
the legal obligation for certain public service operators to preserve their customers’ 
consumption curves over long periods necessarily implies their compression. 
Similarly, it is crucial to compress audio signals for fast transmissions via the 
international network. 

Wavelets, with other techniques, contribute to provide effective solutions to this 
problem. Of course, the complete compression process includes phases of 
quantization, coding and decoding in addition to wavelet processing itself. Should 
we concentrate on this, the objective then consists of obtaining the sparse 
representation of the signal being compressed. Here we tackle the problem of 
compression by wavelets only from this viewpoint. 

7.10.2. The basic algorithm 

The basic algorithm is very similar to that of denoising and proceeds in three 
steps: 

− decomposition; 
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− selection or thresholding of coefficients (by means of hard thresholding); 

− reconstruction. 

Starting from the signal being compressed we first decompose it on an 
orthogonal wavelet basis using the discrete transform. Then, we select part of the 
coefficients by hard thresholding, preserving intact the coefficients of approximation 
of a suitably selected level. Lastly, starting from the thresholded coefficients, we 
reconstruct a signal applying to them the inverse discrete transform. The obtained 
signal is the compressed signal. 

7.10.3. Why does it work? 

The key argument for the understanding of the effectiveness of these methods, 
resides in the capacity of the wavelets bases, to represent broad classes of functions 
in a very parsimonious way. 

7.11. Compression methods 

7.11.1. Thresholding of the coefficients 

The simplest framework to introduce the heart of compression by wavelets is to 
take a function f  with finite energy and considering an orthonormal wavelet basis 
of ( )2L {  denoted simply by { }m mg ∈’ .  

The representation of f  in this basis is , m m
m

f f g g
∈

= ∑
’

. The coefficients 

of f  are { }, m mf g ∈’ ; we will denote them by ,m mf gα = .  

Performing a compression consists of selecting a fixed number M  of 
coefficients. Thus, in general, such a compression is carried out with loss. Let us 
denote by I the set of indices of the M  selected coefficients and m mM

m I

f gα
∈

= ∑  

the approximation obtained.  

If we agree to assess the quality of compression by using the quadratic error, we 

have:

 

2 2
mM

m I

f f α
∉

− = ∑ . Since 22
m

m

f α
∈

= ∑
’

, it is clear that the best 

choice of I  consists of preserving the M  largest coefficients, in absolute value. By 
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denoting { }
pm p

α
∈’

 the coefficients sorted in descending order, the optimal 

quadratic error is then 
2 2

pmM
p M

f f α
≥

− = ∑ . 

We can construct the “compressibility” curve on a Doppler signal: on the x-axis 
we find the number M of preserved coefficients and on the y-axis is the ratio of 

preserved energy 
2 2/Mf f , or 

2 21 ( / )Mf f f− −  if we express it 

according to the associated relative quadratic error. Two curves are represented in 
Figure 7.16: one for the initial signal, the other for the coefficients of this signal 
analyzed with the wavelet db1. For the signal and the coefficients, we preserve the 
M  largest value (in absolute value). 

We can say that the signal energy concentrates in a far fewer coefficients for the 
wavelet representation than for the usual signal representation: the curve of 
coefficients grows very quickly towards 1 and is always clearly above that of the 
signal. 

The signal has been decomposed at level 8 using the wavelet db1. The largest 
coefficient of decomposition, which is an approximation coefficient of level 8, 
contains 23.97% of the energy. The greatest signal coefficient, in turn, holds merely 
0.28% of the energy. These two extreme coefficients are represented by two dots in 
Figure 7.16. 
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Figure 7.16. Compressibility curves 
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With others wavelets the compressibility curve primarily has the same aspect. 
For example, in Figure 7.17, we have represented the curves of compressibility of 
the signal and the decompositions by wavelets db1 and sym6 with a logarithmic 
scale for the number of coefficients. The more vanishing moments the wavelet has, 
the “better” the capacity of compression of the basis. 

 

Figure 7.17. Compressibility curves for the signal, and wavelets db1 and sym6 

7.11.2. Selection of coefficients 

Other strategies can be used in this context, when the norm chosen to measure 
compression quality is not the 

2

i norm used above. This can be irrelevant for 

perceptual reasons. 

In [BIR 97], Birgé and Massart propose a strategy enabling greater flexibility. 
They establish a result of the optimal speed convergence for functions f  belonging 
to Besov spaces. This strategy results in selecting large coefficients at each level. 
More precisely, the approximation coefficients at the level J are kept and for each 
finer level j J≤ , only the jn  largest detail coefficients, by absolute value, are 

kept. The numbers jn  grow with j  as ( )/ 1M J j α+ −  where M  is a positive 

constant and 1α >  is a parameter. The method thus consists of preserving a rough 
approximation and selecting few coefficients for the levels of fine details, which 
contain high frequency signal fluctuations and more and more coefficients so for the 
coarsest levels. 
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7.12. Examples of compression 

Let us illustrate the methods of compression by wavelets of one-dimensional 
signals, starting by considering a synthetic signal compressed via a global 
thresholding.  

7.12.1. Global thresholding 

Figure 7.18 is organized into two columns. 

In the first column we find only one plot making it possible to adjust the global 
threshold for the coefficients of the signal to be compressed: all the coefficients 
which are, in absolute value, lower than the threshold (equal to 8.049 and located by 
the vertical dotted lines) are zeroed by the compression procedure. The possible 
values of the threshold are carried by the x-axis. Two curves are drawn: one 
increasing, giving the percentage of zeros in the representation of the compressed 
signal, the other decreasing, giving the percentage of the energy preserved by the 
compressed signal. 

In the second column, in the top graph, the signal is superimposed on the 
compressed signal. At the bottom we find a colored version of the wavelet 
coefficients (obtained using sym4) from levels 1 to 5 of the original signal and in the 
bottom graph, the counterpart for the thresholded wavelet coefficients, from which 
the compressed signal is reconstructed. 

The percentage of zeros in the wavelet representation is 94.98% for 92.21% of 
energy preserved. This stems from the fact that the signal is noisy and, consequently, 
that the very fast fluctuations are uninteresting and therefore removed. The graphs of 
the coefficients before and after thresholding make it possible to note the sparsity of 
the preserved coefficients. 
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Figure 7.18. Compression (global thresholding)  

The resemblance of the results produced by denoising and compression is 
obvious. This is not surprising; it is natural that a good method of compression with 
loss leads to eliminate the noise. Indeed, if we compress a noisy signal of the type 
defined by [7.1] by preserving the largest coefficients, we will denoise it, at least 
partially, since noise coefficients are generally all “small”; this is what occurs in this 
example. The difference is that the threshold chosen for compression comes from 
external constraint: frequency bandwidth, available memory, prescribed 
compression ratios. This is why denoising is not perfect here and fluctuations absent 
from the original signal f  appear in the compressed signal. On the contrary, in the 
case of denoising the technique selects the threshold automatically by estimating the 
noise level using the information provided by the model. 

7.12.2. A comparison of the two compression strategies 

The two strategies described above often yield similar results for reasonable 
choices of the parameters. Let us examine, for example, (see the graph on the right 
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in Figure 7.19) a signal made up of a portion of a sinusoid to which we have added a 
jump at position 310, a second jump at position 730 and a white noise. Let us 
compare the method of selection and the associated global thresholding. 

First of all, let us apply the strategy of selection of the largest coefficients by 
level. We then obtain Figure 7.19.  

  

Figure 7.19. Compression (selection by level)  

This strategy leads to saving approximately 5% of the coefficients and makes it 
possible to capture 92% of energy as indicated above the right-hand column. The 
result obtained is satisfactory since the jump and the discontinuity are preserved, the 
noise is eliminated except around three positions. 

If one applies the corresponding strategy of global thresholding, i.e. leading to 
the same percentage of zeros in the representation after thresholding, we obtain the 
result displayed in Figure 7.20. 

      Original signal without noise 
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Figure 7.20. Compression (global thresholding) 

The result is naturally better from the point of view of the percentage of 
preserved energy, since for this criterion and for a fixed percentage of zeros it is the 
best possible selection. Let us note, however, that the gain is relatively small: we 
pass from 91.67% to 92.03%. On the other hand, more coefficients linked to the 
noise are preserved, so the signal compressed by this method is of less satisfactory 
aspect than the previous one.  

This toy example clearly illustrates the difference between the two strategies. To 
this end it is enough to compare the graph of the preserved coefficients at the bottom 
on the right of the two figures: global thresholding tends to preserve coefficients at 
small scales corresponding to levels 1, 2 or 3, whereas the selection strategy tends 
towards large scales (levels 4 or 5). 
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7.13. Denoising and compression by wavelet packets 

We can easily extend the algorithms of denoising and compression to the 
wavelet packet bases. This extension is especially useful in compression; for a fixed 
orthogonal wavelet it exploits the increased capacity of compressibility of the 
wavelet packet bases compared to the corresponding wavelet bases.  

Let us illustrate this point by examining the example of a noisy chirp. For the 
wavelet sym8 and level 6 decomposition, let us fix the threshold so that the 
percentage of preserved energy is 90%. The effect of this global thresholding 
applied to the wavelet decomposition is provided in Figure 7.21. This decomposition 
is performed using the periodic signal extension, in order to be able to directly 
compare the percentages of zeros in the compressed signals. 

 

Figure 7.21. Compression by wavelets – sym8, level 6, global thresholding 
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The percentage of zeros obtained is 78.71%. Let us then apply the threshold 
leading as previously to 90% of energy preserved in the wavelet packet 
decomposition of the signal. The percentage of zeros obtained is now shifted to 
88.77%, that is a gain of 10%. 

7.14. Bibliographical comments 

Let us conclude this chapter with some historical and bibliographical 
observations (see Chapter 12 of [MEY 93]). The first papers appeared at the 
beginning of the 1990s and powerful ideas emerged very early, for example, in the 
work of Donoho, Johnstone, Kerkyacharian, Picard, Doukhan and Antoniadis for 
denoising and the work of Coifman, Cohen and De Vore for compression. These 
ideas were then developed by many authors. In order to grasp the extent of the 
stimulation exerted by these ideas in the statistics and signal community, see [ANT 
95]. 

We find typical results in the rather numerous books dedicated, especially since 
1998, to the question of the use of wavelets in statistics. Ogden [OGD 97] offers a 
basic presentation thereof. The books by Vidakovic [VID 99] and Percival and 
Walden [PER 00] constitute at present the two most complete references in the field. 
In the extremely rich book by Mallat [MAL 98], two chapters tackle these questions 
from a point of view of signal processing. Several points of our book take this point 
of view as a starting point. For a more technical vision see Härdle et al. [HAR 98]. 
Moreover, see the papers on synthesis by Antoniadis [ANT 97], Antoniadis et al. 

[ANT 01] and Abramovic et al. [ABRA 00]. 



Chapter 8 

Image Processing with Wavelets 

8.1. Introduction 

The applications of wavelets in image processing are often synonymous with 
compression. Today, the need for storing large quantities of information and for fast 
transmission through international communication networks are key issues. This is 
why two examples of wavelet used in this field have had a particularly pronounced 
impact:  

– for fingerprint storage, the FBI finally chose an algorithm containing wavelets 
[BRI 95]; 

– more recently, the compression standard JPEG 2000 [JPE 00] has also been 
built around algorithms containing wavelets.  

These successes had a resounding echo and contributed to the popularization of 
wavelets. For this reason, the last part of this chapter is devoted to what remains the 
main 2D-wavelet application: compression.  

Before focusing on this point this chapter gives a rapid presentation of the 
theoretical framework and considers two of the more marginal but still efficient 2D-
wavelet applications. We introduce the concepts of decomposition, approximation 
and detail for an image. They then play a crucial role in: 

– the edge detection. In this part we illustrate the capacity of wavelets to locally 
analyze the fluctuations of image grayscale levels. The processed examples show 
that, almost without processing, the analysis of images by wavelets makes it possible 
to extract a new image, from which we can isolate the edges; 
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– the fusion of images1. Here we crucially use the local character of wavelet 
coefficients in order to mix two decompositions stemming from different images. 
We first present the problem and the technique used with a simple example. The 
second processing, which is more realistic, fuses two fuzzy images, while the last, 
less serious processing, amalgamates a mask of the Japanese Nô theater with the 
bronze bust of a Roman emperor.  

We then use two examples to tackle the techniques of wavelet image denoising, 
which prove to be powerful and easy to use. The problem and the procedure are 
presented in an example of an artificially noisy image before considering a real 
noisy image. 

Finally, in the last section we present the principles of compression by wavelets 
and then concentrate on aspects specifically related to wavelets before tackling the 
complete compression chain with a particular interest in quantization and coding. 
This point plays a very important part and has a place in this book for the following 
reason. In the preceding version of the JPEG standard (1992), the discrete cosine 
transform (DCT) was employed to transform images before coding. The first tests 
concerning the use of wavelets in compression, although promising, did not yield 
results clearly superior to those of the DCT. The creation and implementation of the 
coding algorithm EZW (embedded zerotree wavelet encoding; see [SHA 93]) led to 
the development of the JPEG 2000 standard. This algorithm fundamentally exploits 
the arborescent nature of the multi-resolution analyses; it is presented at the end of 
this chapter and in an appendix at the end of the book. 

8.2. Wavelets for the image 

Multi-resolution analyses of ( )2L {  were defined in Chapter 2 as a family of 
decreasing subspaces having various properties related to approximation, dilation 
and translation. Similarly, we can introduce multi-resolution analyses of ( )2 2L {  
(see [DAU 92] Chapter 10, p. 313-315 and [MAD 92]). However, 2D multi-
resolution analyses usually come from constructions using tensor products. 
Hereafter we will restrict ourselves to this case. 

Starting with a 1D multi-resolution analysis we note the associated 

approximation and detail spaces as 1D
jV  and 1D

jW . For every level j  the 

approximation space of the 2D multi-resolution analysis is obtained as a sum of four 
1D tensor products: 

                              
1 Our presentation is based upon the ideas used by P.M. Zeeuw in [ZEE 98]. 
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( ) ( ) ( ) ( )2 1 1 1 1 1 1 1 1
1

D D D D D D D D D
j j j j j j j jjV V V V W W V W W− = ⊗ ⊕ ⊗ ⊕ ⊗ ⊕ ⊗  

This relation is also written: 

2 2 2 2 2
1

D D D D D
j j j jj h v d

V V W W W−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⊕ ⊕ ⊕⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

Indeed, 2 1 1
1 1 1

D D D
j j jV V V− − −= ⊗  with 1 1 1

1
D D D

j jjV V W− = ⊕ , which makes it 

possible to obtain the first expression for 2
1

D
JV − . 

Whatever the method of 2D construction, whether using tensor products or not, 
we have a scaling function, as in 1D, and three wavelets instead of one. In the 
particular case of tensor construction, if ϕ  and ψ  indicate respectively the scaling 
function and the 1D wavelet, we have: 

– the scaling function: ( ) ( ) ( )2 ,D x y x yϕ ϕ ϕ= ; 

– three wavelets:  

( ) ( ) ( )2
1 ,D x y x yψ ϕ ψ= , 

 
( ) ( ) ( )2

2 ,D x y x yψ ψ ϕ= ,  ( ) ( ) ( )2
3 ,D x y x yψ ψ ψ=  

The algorithms of decomposition and reconstruction of the 2D-DWT, with 
preceding tensor construction, are described in Chapter 3. 

8.2.1. 2D wavelet decomposition 

As in 1D, two types of objects are handled in 2D:  

– approximation or detail coefficients corresponding to coordinates in the bases 
of spaces 2D

jV  and 2D
jW ; 

– reconstructed approximations and details corresponding to projections on 
spaces 2D

jV  and 2D
jW . 

Here we are dealing with monochromatic images, i.e. in grayscale. An integer is 
associated with each pixel of the image, which is an index in an ordered table of 
“colors”. We speak then of indexed images. Within this framework, an image is then 
a matrix of integers. There are, of course, true color images, often associated with 
three matrices, for example the RGB coding. We will not cover here the processing 
of such images (for additional information see [SKO 01]). 
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For a 2D signal noted X , we affect the values to the coordinates in 2
0

DV . We 
break X  up into a sum of orthogonal signals corresponding to different 
visualization or resolution scales. Thus, we have: 

1 1 2 1j jX A D A D D D= + = = + + + +A A  

Decomposition along three directions of detail spaces implies that in 2D: 

( ) ( ) ( )1 v jj j jj h dj j
A A D A D D D−

⎡ ⎤= + = + + +⎢ ⎥⎣ ⎦
 

where hD , vD  and dD  indicate respectively what is usually called horizontal, 
vertical and diagonal details. 

An important point distinguishes the 1D from the 2D, it is the notion of “vision” 
attached to the 2D. In general, we process an image representing more than one 
simple function with two variables or a matrix because it implicitly contains the 
concept of “visual rendering”. We could also draw parallels with the 1D if, for 
example, we attached the concept of “audio rendering” to a signal. 

8.2.2. Approximation and detail coefficients 

8.2.2.1. Horizontal, vertical and diagonal details 

Let us take an image extracted from an A. Dürer painting, for which we carry out 
a level 1 analysis, followed by level 2 analysis using the Haar wavelet. 

The initial image of size (256 × 256) presents marked geometric aspects. In 
particular, vertical and horizontal lines clearly stand out in the analyses. 

In Figure 8.2 on the left, the coefficients of approximation and the coefficients of 
detail of level 1, are represented as follows:  

– A: approximation coefficients; 

– H, V, D: coefficients of horizontal, vertical and diagonal details respectively. 

The size of the “small images” respects the initial image proportions and the 
number of coefficients: (256 × 256) = 4 × (128 × 128). The intensity of color is 
proportional to the absolute value of coefficients, from the smallest in dark to the 
largest in light. Each small image of coefficients is colored independently of the 
others. 

At level 2, the level 1 detail coefficients are preserved and the level 1 
approximation coefficients are decomposed. 
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Figure 8.1. Magic square 

 

 

 

 

Figure 8.2. Magic square decomposition at level 1 (top) and at level 2 (bottom).  

The two graphs on the right show the organization of the coefficients 

V 

A 

 
H 

D 

H 
A H 

D V 

V D 
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8.2.2.2. Two representations of decomposition 

We commonly use two types of representation for 2D wavelet decomposition. 
The first, already presented, highlights the proportions between the various 
components. The second representation highlights the arborescent aspect of wavelet 
decomposition. 

 

Figure 8.3. Level 3 decomposition of the magic square 

Let us consider level 3 decomposition of the previous image, represented in 
Figure 8.3. For each level we keep detail coefficients and decompose the 
approximation coefficients. Each line jL , for 1,2, 3j = , presents the level j  
approximation coefficients followed by the coefficients of the three details for the 
same level. At the line j , each coefficient matrix is a 4j

 time smaller than the 
original image. The above figure does not respect this scale difference. 
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The coefficients obtained using the Haar wavelet make it possible to suitably 
distinguish the principal geometric aspects of the analyzed image. The use of 
another wavelet would make the direct reading of the coefficients more difficult, 
even impossible. To mitigate this drawback, the strategy that has to be adopted in 
order to interpret the results of the analysis is the same as in 1D: it is enough to 
consider the associated reconstructed signals (see section 8.2.1). This is what we 
will do now. 

8.2.3. Approximations and details 

All the images in this section have the same size as the original image and the 
same resolution. 

 

Figure 8.4. Approximations and details by direction, of the “tartan” 

image analyzed at level 2 with the wavelet sym4 

Let us consider the analysis of an artificial image by the wavelet sym4. In the 
first column of Figure 8.4 we can see, from top to bottom, the original image and the 
level 1 and 2 approximations. The three following columns contain horizontal, 
diagonal and vertical details respectively. 

Level 0 

Level 1 

Level 2 
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The geometric aspects come out clearly, despite the use of a wavelet different to 
the Haar wavelet. 

Having three details at each level is inherited from the use of tensor 1D wavelets. 
In the two examined theoretical cases this makes it possible to highlight the edges in 
each direction. It is also interesting to have a global vision of the detail, thus, making 
it possible to find the following interpretation: an approximation is the sum of a 
rougher approximation and a touching up. 

To this end, let us group the details corresponding to the various orientations for 
each level by exploiting the equality: 

( ) ( ) ( )1 v jj j jj h dj j
A A D D D A D−

⎡ ⎤= + + + = +⎢ ⎥⎣ ⎦
 

In Figure 8.5 we find four rows. The first row shows the original image 
assimilated to 0A . The two following rows illustrate the equalities: 

1 1X A D= +  (2nd line) 

2 2 1X A D D= + +  (3rd line) 

This last relation breaks X  up into a level 2 approximation and two final 
improvements capturing the differences between two successive approximations: 

01 1D A A= −  and 2 1 2D A A= − . 

Finally, in the last row we group the details 1D  and 2D . Thus, the original 
image is expressed as the sum of a rough approximation and the total final 
improvement: 

2 1 2plusX A D= +  (4th line) 

In Figure 8.5 1D  and 1 2plusD  highlight the contour lines of the original image. 
We will take advantage of this property in the following section. 
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Figure 8.5. Approximations and details of the “tartan” image  

analyzed at level 2 with the wavelet sym4 

8.3. Edge detection and textures 

Here we deal with the edge detection using three examples: the first one, which 
is elementary, is associated with a synthetic image, whereas the two following ones 
are associated with real images. 

8.3.1. A simple geometric example 

Let us consider a grayscale image containing three simple geometric forms (see 
Figure 8.6). 

 

Level 0 

Level 1 

Level 2 
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We carry out a level 1 analysis with the wavelet db2 and then we calculate the 
approximation and detail of level 1. The image X  is expressed as 1 1X A D= + . In 
Figure 8.7 we represent 1A  on the left and 1D  on the right. For the approximation 1A  
we use the same palette of colors as for X . For the detail 1D  we proceed differently 
because the amplitude of its values implies a bad representation. We choose a two-
color representation: black if 1 0D >  and white if 1 0D = . 

 

Figure 8.6. Original image: three simple geometric forms 

                

Figure 8.7. Approximation 
1A (on the left) and detail 

1D (on the right) 

The approximation 
1A  

resembles the initial image. It contains the texture zones. 
Let us note that in a certain manner 

1A  
is a “compressed” version of the initial 

image since it is obtained with four times less information. 

Via a suitable representation and subject to the use of a wavelet with small 
support, the details enable the edge detection, as we can see on the right side in 
Figure 8.7. 
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8.3.2. Two real life examples 

We now analyze two real images showing certain marked geometric features. 
These analyses are carried out at level 1 using the Haar wavelet and the same 
techniques are applied to both the images. 

We decompose the image as previously: 1 1X A D= + . The approximation 1A , 
which is very similar to the initial image X , is visualized using the same color 
palette as X . The detail 1D , in turn, is coded in two fashions: 

– D1
Grayscale obtained by dividing the variation band of the values of 1D  into 

255 intervals. To each of them we allot a shade of gray; 

– D1
Two-color obtained using two-color coding defined with the aid of a threshold: 

black if |D1|
3 ≥ threshold and white if |D1| < threshold. 

This second representation suppresses the fluctuations of grayscale and extracts 
the skeleton of the large coefficients from which the edges are detected. 

Each analysis is summarized by four images laid out as follows: 
 

X  1A  

D1
Grayscale D1

Two-color

 
 

In the first image analyzed (see Figure 8.8), vertical, horizontal and oblique lines 
clearly mark the edges of regular zones. They are well located by the D1

Two-color

 
detail. The building shade zone located at the foreground is also perfectly delimited 
by a contour. The stone walls (in the foreground and at the back), the tree (on the 
left) and the paved path (in the center), which are the zones with irregular texture, 
yield messy details. 

The second image (see Figure 8.9), representing a porch, also contains regular 
geometric patterns: vertical, horizontal, oblique and arcs of a circle. They are all 
perfectly detected in detail 1D . The edges of shady zones are also clearly visible. 

These examples show that, almost without any processing, the image analysis 
using wavelets makes it possible to extract a new image like D1

Two-color, from which 
the edges can be isolated. To improve edge detection we may change the analyzing 
wavelet, the level of decomposition or the threshold, but also reprocess D1

Two-color, 
for example, by erasing all isolated black spots. 
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                         Original image          Approximation A1 

       

                               D1
Grayscale                     D1

Two-color 

       

Figure 8.8. Edge detection (a building) 

                             Original image           Approximation A1 

      

                                D1
Grayscale                    D1

Two-color 

      

Figure 8.9. Edge detection (a porch) 
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8.4. Fusion of images 

In this section, dedicated to the fusion of images by wavelets, we consider three 
situations. The purpose of the first, constructed on a simple example, is to present 
the problem and the technique used. The second, which is more realistic, 
amalgamates two fuzzy images. The last, a little more playful, amalgamates a mask 
of the Japanese Nô theater with the bronze bust of a Roman emperor. 

8.4.1. The problem through a simple example 

Using an original image represented on the left in Figure 8.10 we construct two 
images of the same size. The first one I1, in the middle, is obtained by darkening a 
disk in the center of the image. The second one I2, on the right, is “the supplement” 
of the previous one. In this context the problem of image fusion by wavelets consists 
of reconstituting the original image using the wavelet decompositions of the images 
I1 and I2. 

          

Figure 8.10. The original image on the left and the extracted images I1 and I2 

The technique involves three phases: 

– decompose the images to be fused in the same wavelet basis; 

– combine the two decompositions in order to obtain a new one; 

– use the inverse transform to construct a new image. 

Let us apply this technique to the above example. Let us first decompose the 
images I1 and I2 at level 2, with the wavelet db2. The two decompositions are 
presented in Figure 8.11. 
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Figure 8.11. Decomposition of the image I1 (on the left) and the image I2 (on the right) 

Since the two images are of the same size, the decompositions also have 
identical sizes. The idea now is “to mix” the two decompositions. We directly 
construct a new decomposition of the right size, for which each coefficient is 
obtained by combining the corresponding coefficients of the decompositions of I1 
and I2. 

How can we perform this mixing? We may choose to use a linear combination 
(the average for example) or the maximum. 

In this example we choose the strategy of the maximum for the level 2 
approximations and all the details. It is particularly relevant a priori, since the two 
images are complementary. The wavelet analysis being local, this property is 
preserved in the decompositions, as Figure 8.11 reflects very well. 

The origin of the detail coefficients of the new decomposition ( 1D  in the first 
row and 2D  in the second row) is depicted in Figure 8.12 in two colors. The 
coefficients coming from I1 are shown in light gray, otherwise they are shown in 
dark gray. 

The use of the inverse transform then constructs a “mixed” image. On the left in 
Figure 8.13 we find the new decomposition and on the right is the fused image 
obtained by the inversion of the DWT. The joining “scar” of circular form is far 
from visible with the naked eye, but it exists and arises from the “uncertainty” zone 
at the border of the disk. This zone is easily distinguished in the second row of 
Figure 8.12. 
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Figure 8.12. Source of the level 1 and 2 detail coefficients 

             

Figure 8.13. Fused decomposition and image 

We have thus fused the images I1 and I2.  

The preceding procedure, with some technical adjustments, is usable to process 
less academic examples. We can thus amalgamate images of different size, when it 
becomes necessary to make them the same size and to carry out the required 
positioning shift.  

1D  

2D  
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8.4.2. Fusion of fuzzy images 

We can also start with two corrupted versions of the same image and try to 
reconstitute it as well as possible. 

In Figure 8.14 we find two images (noted I1 and I2) with fuzzy zones whose 
intersection is very small. 

                 

Figure 8.14. The corrupted images I1 (on the left) and I2 (on the right) 

The technique and the strategy for choosing coefficients are the same as those 
adopted in the previous example. 

The two images to be fused are analyzed at level 2, with the wavelet db2, and the 
decompositions are represented in Figure 8.15.  

                 

Figure 8.15. Decomposition of the I1 image (on the left) and the I2 image (on the right) 



Image Processing with Wavelets     251 
 

The fuzzy zones in the various details are clearly visible. 

The situation is different from that of the preceding example where the two 
images to be merged were obtained from the same image by complementary 
screenings. Here the blur affects almost disjoined zones, but relation X = l1 + l2 is 
no longer true. Nevertheless, the strategy of maximum is to be retained, since the 
blur affecting one of the images, for a given pixel, stems from a local average and 
thus generates a zero detail coefficient. For this reason, the black zones of the two 
decompositions in Figure 8.15 correspond to the fuzzy zones of the images I1 and 
I2. The same argument holds true for the approximations, since the use of the 
maximum will select non-regularized coefficients. 

In Figure 8.16 we see the origin of the coefficients of the new decomposition 
represented as in section 8.4.1. 

                    

Figure 8.16. Source of the level 1 and 2 detail coefficients 

We note here that the zones delimited by these origins are less homogenous than 
in the preceding example. That reflects the greatest difficulty of the problem. 

The process ends by obtaining the new decomposition, on the left in Figure 8.17, 
and the fused image, on the right. 

1D  

2D  
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Figure 8.17. Fused decomposition and image 

The result is satisfactory. We obtain a new image that at first sight no longer 
contains fuzzy zones. Nevertheless, an attentive examination shows that a small 
fuzzy zone persists in the collar of the shirt, below on the left. It is difficult to 
distinguish on the fused image, but it is obvious in the level 1 details of the new 
decomposition. It corresponds to a non-empty intersection between the fuzzy zones 
of the images I1 and I2. 

8.4.3. Mixing of images 

In the previous examples, the two images to be fused were corrupted versions of 
the same original image. Here we consider a new problem: it consists of 
constructing a new image by combining two different images. The technique used is 
the same, except possibly for the manner of combining the decompositions. 

The two images used in this example represent a mask of the Nô theater, on the 
left in Figure 8.18, and the bust of a Roman emperor, on the right. 
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Figure 8.18. The two initial images I1 and I2 

These two images have the same size: 256 × 256. They are decomposed at level 
2 with the bior6.8 wavelet, often used in 2D. The two decompositions are depicted 
in Figure 8.19 and the details are presented “in negative”. By considering the detail 
coefficients we notice that the I1 image is more regular than the I2 image. 

                   

Figure 8.19. Decomposition of the I1 image (on the left) and the I2 image (on the right) 

Initially, in order to construct the new decomposition, we adopt the strategy 
based on the average, simultaneously for the approximation and the details 
coefficients. The new decomposition and the fused image are represented in Figure 
8.20. 
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When the detail coefficients of the two decompositions are considered, we note 
that the large coefficients are definitely fewer for the first image. Averaging out the 
details in fact leads to decreasing the marked features of the two images in the 
reconstructed one: beard, hair, etc. We may reduce this effect and reinforce the 
edges by choosing the maximum instead of the average for the detail coefficients. 
Figure 8.21 shows the decomposition and image obtained in this manner. 

 

         

Figure 8.20. Fused decomposition and image: average 

 for the details and the approximation 

                    

Figure 8.21. Fused decomposition and image: average  

for the approximation and maximum for the details 
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Figure 8.22. Various fused images obtained by modifying the  

way of combining coefficients of approximations and details 

Obviously, we may choose many other strategies to “mix” the coefficients of the 
two decompositions and, thus, to obtain a gallery of portraits. If we note by (a, d) the 
couple of combinations relating to the approximations and the details, in Figure 8.22 
we find the fused images corresponding to the following combinations: from left to 
right, at the top, (maximum, maximum), (minimum, minimum), (average, minimum), 
(average, details of the bust) and then at the bottom (maximum, minimum), 
(minimum, maximum), (random, random). 

 
All the previous fusions are obtained by applying a global strategy for choosing 

the origin of the coefficients. Evidently, it is possible to use local choices. 

As an example let us start with the two preceding decompositions and construct a 
new decomposition. Let us call C  one of the decomposition coefficients matrices 
and A , B  the corresponding matrices for the decompositions of I1 and I2. The ith 

line of C  is obtained by: ( )1ij i ij i ijC t A t B= − + . While i  varies, it  is a linear 

function of i with a value of 0 for the first row and 1 for the last. Thus, the 1st line of 
C  is equal to the 1st line of A  and the last line of C  coincides with the last line of 
B . The decomposition and the image obtained in this manner are represented in 
Figure 8.23. 
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Figure 8.23. Fused decomposition and image: combination by row 

By permuting the role of the two images and/or by modifying the weights of the 
linear combinations we obtain a variety of fused images, as shown, for example, by 
Figure 8.24. 

                 

Figure 8.24. Various images fused by row by row combination 

Fusing images with wavelets thus constitutes a simple and easily adaptable 
technique to construct synthesized images. 

8.5. Denoising of images 

In this section we consider the problem of denoising of images. The methods 
detailed in the case of the 1D signals (see Chapter 7) can be extended to image 
denoising. However, they are in general less powerful. 

In the first section we present the problem and the technique on an example of an 
artificially noisy image. Then, in the second section, we apply a similar technique to 
an image noised in an uncontrolled way. 
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8.5.1. An artificially noisy image 

Figure 8.25 presents on the left the original image noted f  and on the right the 

noisy image noted Z . 

                 

Figure 8.25. Original image (on the left), noisy image (on the right) 

As in the 1D case we suppose that the image Z  is the original image f  
corrupted by homogenous additive noise. That is, we consider a model of the type: 

,( , ) ( , ) i jZ i j f i j ε= +  [8.1] 

where Z  is the image to be denoised, ε  is a white noise with a covariance matrix 
2Iσ  and f  is the image being restored. 

The process of denoising by wavelets consists of three phases: 

– wavelet decomposition at the J  level of the image to be denoised; 

– thresholding, in three directions, of the detail coefficients with smaller absolute 
value than a threshold dependent on σ ; 

– reconstruction of the denoised image, starting from the approximation 
coefficients of level J  (unchanged) and of the modified detail coefficients. 

We carry out the wavelet decomposition of the noisy image by the Haar wavelet, 
at level 4, and obtain the results presented in Figure 8.26. 
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Figure 8.26. Noisy image (on the left), level 4 decomposition  

(in the middle) and level 4 approximation (on the right) 

The principle of denoising is simple. We start with a coarse version of the image, 
here the level 4 approximation and then we select detail coefficients to construct the 
necessary touching up in order to improve the result. 

We will present three successive tests, without specifying the choice of 
thresholds but focusing on the results (see [MIS 00]). 

Let us begin by thresholding the Haar decomposition coefficients seen in Figure 
8.26. The threshold is obtained by estimating σ  and applying a penalization 
strategy. 

 
Original image Denoised image 

 

Figure 8.27. Noisy image (on the left) and image denoised by Haar (on the right) 
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In Figure 8.27 we find the noisy image on the left and on the right the denoised 
image. The latter is not satisfactory, because it presents serious blocking effects. It is 
one of the common drawbacks of the Haar wavelet. Let us take a more regular and 
almost symmetric wavelet sym6 and apply a similar strategy. 

 
Original image Denoised image 

 

Figure 8.28. Noisy image (on the left) and image denoised by sym6 (on the right) 

The denoised image (see Figure 8.28) no longer presents any blocking effects but 
now exhibits other more local imperfections. 

In fact, direct adaptations of the usual strategies of the 1D denoising to the two-
dimensional case do not apply to images in a satisfactory way. On the other hand, 
the use of the invariant transform by translation (known as SWT; see Chapter 3), 
whose contribution to 1D denoising (see Chapter 7) remains rather simple, improves 
the results for 2D in a sometimes spectacular way. 

The principle, in this context, consists of finding the average of several denoised 
images. They are obtained using the usual scheme of denoising applied to slightly 
different decomposition coefficients. 

Thus, we have here two competing effects: a better edge detection due to taking 
into account all the shifts in the analysis and a more intense smoothing effect due to 
averaging the images denoised on each basis.  

The application of the SWT to the example considered is presented in Figure 
8.29. The wavelet used is sym6 and the decomposition is carried out at level 3. 
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The result is very satisfactory from the point of view of noise. On the other hand, 
we note a loss of definition of the edges and the denoised image is fuzzy.  

            

Figure 8.29. Noisy image (on the left) and image denoised by the SWT (on the right) 

After this example in which we added “a good” noise to a good quality image, 
let us move on to a noisy image obtained via an uncontrolled process. 

8.5.2. A real image 

The image to be denoised is presented in Figure 8.30. It is a real image coming 
from the digitalization of an ID photo. It is of a rather bad quality, as can be seen 
from the hair, for example. An additional noise seems to have been superimposed on 
the original image and, moreover, white spots are deteriorating the texture of the 
face. 

We try to improve the image by applying denoising methods similar to those 
seen previously. Let us consider again the model [8.1]: 

,( , ) ( , ) i jZ i j f i j ε= +  

where f , the image to be restored, is in this case the initial ID photograph. 

Let us first apply the denoising method by SWT using the wavelet sym6 and 
decomposing at level 3. The result is shown in Figure 8.31. 
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Figure 8.30. Original image (Catherine) 

The image is suitably denoised, thus illustrating the robustness of the method 
with respect to the probabilistic structure of the noise. However, it is slightly fuzzier 
than the original image, as in the previous case. 

 

Figure 8.31. Denoising of Catherine by SWT 
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8.6. Image compression 

The problem of compression is often handled using image compression. For a 
digital image, the essential objective of compression is to minimize the length of the 
series of bits necessary to represent it, while storing information of acceptable 
quality. Wavelets contribute to efficient solutions to this problem. Of course, the 
complete chain of compression includes phases of quantization, coding and 
decoding in addition to the wavelet processing itself. If we concentrate on it, the 
objective consists of obtaining the sparsest representation as possible (i.e. 
comprising the largest number of negligible terms) of the image to be compressed. 
Sometimes we accept a weak degradation of the compression performance in order 
to satisfy complementary objectives: real-time transmission, uninterrupted 
reconstitution of increasingly fine versions of the same image, etc. 

In this section we first present the principles of compression by wavelets and we 
then concentrate on the aspects specifically related to the latter. Finally, we tackle 
the complete compression chain concentrating on quantization and coding. 

8.6.1. Principles of compression 

Starting from the image to be compressed, we first perform decomposition on an 
orthogonal or biorthogonal wavelets basis by means of the discrete transform. Then 
we select a part of the coefficients by thresholding, while preserving intact the 
approximation coefficients of an appropriately selected level. The kept coefficients 
are then quantized and, to finish off, they are encoded for purposes of storage or 
transmission. Decompression consists of inversing the previous operations as far as 
possible. From the decoded and “dequantized” coefficients we rebuild an image by 
applying the inverse discrete transform. The image obtained is thus the compressed 
image. 

 
All of these operations are schematized in Figure 8.32. We then speak about 

“true” compression. This point will be developed in section 8.6.3. 

This type of compression can lead to a loss of information during one of the two 
following stages: 

– at the thresholding step, when the value of certain coefficients is modified; 

– at the quantization step, when the value of certain coefficients is truncated. 

The first “error” can be suppressed if no thresholding is performed and the 
second can be avoided by the use of wavelets with integer or rational coefficients. 
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DECOMPRESSION

 

Figure 8.32. The diagram of compression – grayed stages (in the right part 

in dotted lines) are not a priori directly related to wavelets 

Initially, we concentrate on the aspects related to wavelets. They are involved in 
the first step of compression and the last step of decompression. A priori the other 
operations do not depend on the use of wavelets; they are grayed out in Figure 8.32. 
However, certain methods of coding exploit the arborescent structure of the wavelet 
decomposition. Let us concentrate on the path which links, in the figure, the 
transform, the thresholding and the inverse transform. 

8.6.2. Compression and wavelets 

8.6.2.1. Why does it work? 

The key argument used to understand the efficiency of these methods is the 
capacity for economic representation of broad image classes in wavelet bases. 
Indeed, images generally have very sparse wavelet decompositions, i.e. 
representations where few coefficients are significantly different from zero. They 
are very well represented by the coefficients of a rather rough approximation 
supplemented by some large detail coefficients. Compression would then consist of 
keeping the “good” coefficients and coding them in the most efficient way possible. 
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In the wavelet domain, we therefore concentrate the detail coefficients around 
zero: this is the key to compression. Let us illustrate this fundamental idea with three 
examples. 

Below we present the grayscale histogram of the original image and that of the 
wavelet coefficients for three images: Lena, a fingerprint and a porch. The analyses 
are carried out at level 8 using the Haar wavelet, with a periodic extension mode 
(see Chapter 3). 

       

Figure 8.33. Lena (256 × 256), histogram of values (between 1 and 235)  

and histogram of wavelet coefficients (zoom on the significant part) 

     

Figure 8.34. A fingerprint (256 × 256), histogram of values (between 19 and 152) 

and histogram of wavelet coefficients (zoom on the significant part) 

       

Figure 8.35. A porch (512 × 512), histogram of values (between 1 and 255) 

and histogram of wavelet coefficients (zoom on the significant part) 
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The remarkable fact is that, despite the very different grayscale distributions of 
the three images (multimodal for the first one, unimodal asymmetric for the second 
one and bimodal for the last one), the distributions of the wavelet coefficients values 
are very similar. The significant part of these distributions is symmetric, unimodal 
with the mode at the origin.  

8.6.2.2. Why threshold? 

The simplest framework to introduce the core of wavelet compression consists of 
taking a finite energy function f  and considering an orthonormal wavelet basis of 

( )2 2L {  noted simply ( )m mg ∈’ . The 15 or so lines that follow are taken from 

Chapter 7 and cited here to render this chapter self-sufficient. 

The representation of f  in this basis is ( ), m m
m

f f g g
∈

= ∑
’

. The coefficients 

of f  are ( ){ }, m mf g ∈’ ; we will note them simply as ( ),m mf gα = .  

Performing a compression consists of selecting a fixed number M  of 
coefficients. Thus, generally, a compression is carried out with loss. Let us note I  
the set of indices of M  selected coefficients and m mM

m I

f gα
∈

= ∑  the 

approximation obtained. If we agree to judge the quality of compression by using 
the quadratic error, we have: 

2 2
mM

m I

f f α
∉

− = ∑
 

Since 22
m

m

f α
∈

= ∑
’

, it is clear that the best choice of I  consists of keeping 

the M  longest absolute value coefficients. Noting { }pm
p

α
∈’

 and the coefficients 

being sorted in a descending order, the optimal quadratic error is then: 

2 2
pmM

p M

f f α
≥

− = ∑ .
 

We can define the compressibility curve associated with the representation of ƒ: on 
the x-axis we find the number M of kept coefficients and, on the y-axis, the proportion 

of retained energy 
2 2/Mf f , which is also written 

2 21 ( / )Mf f f− −  if we 

express it as a function of the associated relative quadratic error. 

To illustrate the theoretical aspects developed above, two compressibility curves 
are represented in Figure 8.36. The first uses fingerprint image decomposition on the 
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canonical basis. The second is built on the basis of coefficients obtained by a level 8 
analysis with the db1 wavelet. 

It is clear that the representation in wavelets “concentrates” energy on a very 
small number of coefficients. The largest image coefficient corresponds to 0.01% of 
energy. The largest coefficient of wavelet decomposition, which is the single 
coefficient of the order 8 approximation, captures 87.36% of energy. Let us note that 
the corresponding A8 approximation, although dominating in energy, is not very 
informative visually since it is reduced to a monochromatic square. 

 

Figure 8.36. Comparison between energy percentages for the fingerprint 

8.6.2.3. Examples of image compression  

We decompose the fingerprint at level 5 with the sym4 wavelet and impose 94% 
of zeros in the “thresholded” decomposition corresponding to a universal threshold 
of 28.61. In Figure 8.37 we have represented: on the top left, the original image, on 
the top right the image reconstructed after selection of coefficients, and below, the 
thresholding process performed on the histogram of the wavelet decomposition. 

The result is satisfactory; however, we note a small deterioration of the edge 
definition in the right bottom part of the image. 

Once thresholding has been performed on the 65,536 coefficients, only about 
3,932 non-zero coefficients remain. In particular, the 64 coefficients of the level 5 
approximation are all retained. The distribution by scale level of the kept 
coefficients is indicated in Figure 8.38.  

Let us now decompose a more regular image, with a size of 512 × 512, at the 
level 5 with the sym8 wavelet. We impose 98.50% of zeros in the thresholded 
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decomposition. Kept energy is then very close to 100%. The result (see Figure 8.39) 
is so good that we could almost permute the two images, whereas the image on the 
right is rebuilt with only 1.5% of the coefficients. 

 

             

Figure 8.37. Compression of a fingerprint 

Figure 8.38. On the left, the complete decomposition, in the middle the “thresholded” 

decomposition and on the right the coefficients distribution for the fingerprint  

Zeroed coefficients 
(94% of total) 

 

   
 
 

 

Number Kept 

Ratio 

kept/ 

number 

by level 

Ratio 

kept/total 

number of 

kept coeff. 

A5 64 64 100.00% 1.63% 

D5 192 157 81.77% 3.99% 

D4 768 420 54.69% 10.68% 

D3 3,072 1,460 47.53% 37.13% 

D2 12,288 1,704 13.87% 43.34% 

D1 49,152 127 0.26% 3.23% 

Total 65,536 3,932 6.00% 100.00% 

Threshold = 28.61 
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Once thresholding has been performed, from the 262,144 coefficients, only 
3,932 that are non-zero remain. Again, all the level 5 approximation coefficients are 
kept. Let us also note that a negligible part of the level 1 detail coefficients is kept. 
As in the preceding example, the distribution by scale level of the kept coefficients 
is indicated in Figure 8.40. 

 

Figure 8.39. Compression of a porch 

Figure 8.40. On the left the complete decomposition, in the middle the “thresholded” 

decomposition, and on the right the coefficients distribution for the porch 

NOTE.– as detailed in Chapter 2, biorthogonal wavelets are particularly efficient for 
compression because the analysis part (decomposition) and the synthesis part 
(reconstruction) are treated by two distinct wavelets. The “sparse representation” 
and “rendered decompressed image” aspects are thus partially uncoupled. 

 

   
 
 

 

Number Kept 

Ratio 

kept/ 

number by 

level 

Ratio 

kept/total 

number of 

kept coeff. 

A5 256 256 100.00% 6.51% 

D5 768 480 62.50% 12.21% 

D4 3,072 1,127 36.69% 28.66% 

D3 12,288 1,881 15.31% 47.84% 

D2 49,152 133 0.27% 3.38% 

D1 196,608 55 0.03% 1.40% 

Total 262,144 3,932 1.50% 100.00% 
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We can also not restrict ourselves to wavelets and possibly use wavelet packets. 
Obviously, all these elements play a part in the performance of the compression: on 
the compression ratio, but also on rendered reconstructed image. 

8.6.3. “True” compression 

We have just dealt with aspects specifically related to compression by wavelets 
(see Figure 8.32). However, in addition to the algorithms related to wavelets, DWT 
and IDWT, it is necessary to use other ingredients concerning the quantization mode 
and the coding type. This set constitutes the true compression represented by Figure 
8.41. 

DECOMPRESSION

 

Figure 8.41. The complete diagram of true compression 

Quantization transforms a domain containing an infinite number or even a finite 
but large number of values, in a finite and small set of values. This operation is, 
apart from the thresholding, the only step where information is lost. Coding usually 
consists of transforming a finite set of symbols obtained, for example, after a 
quantization, into a finite stream of bits, i.e. a sequence of 0 and 1. Acceptable 
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coding does not involve any loss of information. Now let us detail each of these two 
operations. 

8.6.3.1. The quantization 

The coefficients obtained by applying the DWT and thresholding to an image are 
generally real numbers. Sometimes they are integers, but their variation domain is 
large. The quantization phase consists of approximating the set of values of the 
coefficients by a finite set of numbers and, in general, implies a loss of information. 

Let E  be a set, P a finite partition of E and F a set containing one and only one 
element of each class of the partition P. The quantizer q  associated with ( ), ,E P F  

is the application for which x̂ F∈  is the image of x E∈ . If KE ⊂ {  we refer to 
a vector quantizer and if E ⊂ { , we refer to a scalar quantizer. 

Let us give a simple example of a quantizer: 

[ ]0,1E =   , 
6

1 1 1 2 5 5
6 6 3 3 6 6

1
0, , , ,1 k

k

P I
=

⎡ ⎡ ⎡ ⎡ ⎡ ⎡ ⎡ ⎤= ∪ ∪ ∪ ∪ =⎣ ⎣ ⎣ ⎣ ⎣ ⎣ ⎣ ⎦A ∪ and 

{ }51 2 3 4 6, , , , ,F e e e e e e=  with k ke I∈  

 
How can we choose class representatives, i.e. ie ? The error of quantization for 

the set { } 1
N

n nX x ==  of given elements of E  is measured by a distance between 

X  and ( ) { } 1
ˆ ˆ N

n nX q X x == = , the set of values obtained by quantization. In 

general, we take the average quadratic error: 

( )2 2

1

1ˆ ˆ,
N

n n
n

d X X x x
N =

= −∑  

If a probability distribution E exists, the quantization error is measured by the 
expectation D of the mean square error. 

0 1 2e  3e 4e 5e 6e1e  
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Let us continue the preceding example and provide [ ]0,1E =  with the uniform 

probability. The best choice for the set F, minimizing the distortion D, is obtained 
by taking the middle of each partition segment for ie : 

{ }71 3 5 9 11
12 12 12 12 12 12

, , , , ,F =  

 

We will now show the effects of quantization on the visualization of the 
fingerprint. This indexed image corresponds to a matrix of integers ranging between 
0 and 255. Through quantization we can decrease the number of usable colors, here 
256. Figure 8.42 illustrates the passing from 256 to 16 colors. We see at the top left, 
the original image, at the top right, the histogram of values, then at the bottom right, 
the histogram of quantized values and at the bottom left, the reconstructed image. 
The classes are delimited by dotted lines and their center is illustrated by a dot. The 
effective interval of values is [ ]19,152  and it is quantized into eight classes. 

 

Figure 8.42. Example of quantization of the original image: a fingerprint 

0 1 2e  3e 4e 5e 6e1e  
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This quantization leads to a compression of the images. Indeed, with a fixed 
length binary code we need 8 bits per pixel to code 256 colors and 3 bits per pixel to 
code 8 of them. We notice that the image obtained after quantization has a good 
quality. However, within the framework of “true” compression, quantization is used 
not on the original image, but on its wavelet decomposition.  

 
Now let us move on to the quantization of coefficients. 

We decompose the fingerprint at level 4 with the Haar wavelet. The histogram of 
wavelet coefficients and the quantized histogram are normalized so that the values 
vary between –1 and +1. The 15 intervals of quantization do not all have the same 
length. In Figure 8.43 we see at the top left, the original image, the coefficients 
histogram at the top right, at the bottom right, the histogram of the quantized 
coefficients and, at the bottom left, the reconstructed image. 

The key point is that the histogram of the quantized coefficients is massively 
concentrated in the class with its center in 0. Let us note that yet again the image 
obtained has good quality. 

 

Figure 8.43. Example of quantization on the wavelet decomposition of a fingerprint 

(only the five significant intervals of quantization are represented) 
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8.6.3.2. EZW coding  

Once transformation and quantization have been performed we have a finite 
sequence X̂  of elements belonging to a finite set of symbols S . The objective of 
coding is to represent in the best possible way, for example by a sequence of 0 and 
1, the sequence X̂  according to predefined objectives. 

We now have to code X̂  in the most efficient way possible. In general, this 
means the most economic way possible, i.e. by minimizing the quantity of 
information used to describe this set. This is the main objective of data compression. 
Thus presented this problem does not have a direct connection with wavelets; it is a 
common problem and studied widely in information theory. There are many 
manners of building a code, let us outline some of them. 

The first idea is to code each symbol of S  using a binary fixed length word 
(fixed length code). Thus, we obtain a sequence of 0 and 1 coding the sequence X̂ . 
From the point of view of compression this method offers practically no interest. 

The second idea consists of exploiting the fact that X̂  contains a large quantity 
of zero values. We can then code the most frequent symbols with shorter sequences 
(variable length code). This reduces the quantity of information necessary to 
represent X̂ . We can also code only the non-zero values of X̂ , but their positions 
should then also be coded. This method, allied to Huffman type coding or semi-

arithmetic or arithmetic codings [HUF 52], [AHO 87], [MAL 98], [WIT 87], [HOW 
92], leads to satisfactory compression performances, comparable with those of JPEG 
92. 

The third idea, which is critical for the use of wavelets in image compression, is 
to fundamentally exploit the tree structure of the wavelet decomposition. Certain 
codes developed from 1993 to 2000 use this idea, in particular, the EZW coding 
algorithm introduced by Shapiro [SHA 93], which we will now consider. 

The EZW algorithm is based on progressive coding of data. On the one hand, 
this makes it possible to obtain during decoding an image whose precision, i.e. 
resolution, increases gradually. In addition, it is possible to obtain a sequence of 
compression ratios based on the length of the retained code. This compression 
usually involves a loss of information, but the algorithm also enables compression 
without loss. 

Generally, real images have a low frequency spectrum. Wavelet decomposition 
transforms them into a set of large (on average) approximation coefficients and 
detail coefficients that are on average always growing with the scale. 
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The multi-resolution aspect and the local aspect of wavelet decomposition make 
it possible to link, at least locally, the coefficients through the decomposition scales. 
They influence the same zone of the image because the wavelets with which they are 
associated have close localizations. The central idea of the EZW algorithm is to 
exploit the inter-scale dependence of these coefficients when coding. Coefficient 
trees are thus coded only once, in good cases. 

More precisely, we link a detail coefficient of the coarsest level J to four children 
of the J–1 level, and so on down to level 1. The corresponding tree structure is 
represented in Figure 8.44. We see, for example, that a level 3 coefficient of the 
horizontal detail (H3) is connected to four level 2 horizontal detail coefficients (H2), 
each one of them connected to four level 1 horizontal detail coefficients (H1). 

The detail coefficients of a wavelet decomposition are then grouped throughout 
the scales by quad trees whose roots are located at the highest scale. A zerotree is a 
quad tree, whose coefficients are, in absolute value, lower than the root coefficient.  

 

Figure 8.44. Coefficient trees linked across scales 

The fundamental idea of the EZW algorithm is to exploit the decrease of 
coefficients across scales and the strong probability of having zerotree. When the 
root coefficient is lower than a fixed threshold, all the others are obviously lower 
than the said threshold and the whole tree can be coded by a single symbol. We will 
present the principle of the basic algorithm, whose performances can be improved 
with additional technical implementation difficulties. 

Once the wavelet decomposition is done, the EZW algorithm carries out several 
successive approximations by quantization of the coefficients. The principle consists 
of scanning the sequence of coefficients several times. Each scan comprises two 
stages. During the first one, the principal stage, they are compared with a threshold 
in order to be classified and possibly coded. The second stage is a refinement stage. 

 

D1

H3

H2
H1

V3 D3

V2 D2

A3

V1
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With each stage the threshold decreases making it possible to refine the 
approximations.  

The order in which the coefficients are considered is important. In order to 
benefit from zerotrees, it is necessary to read the coefficients starting with those of 
large scales. Each coefficient is thus analyzed before its children. Several 
possibilities exist (see Figure 8.45). 

 
Figure 8.45. Two possible orders for scanning the coefficients  

If the sequence of thresholds is not predetermined, it should be transmitted to the 
decoder. However, in general, a “binary” thresholding is used: we initialize the 
threshold, then for each following stage we divide the current threshold by two. This 
method makes it possible to work directly on the binary representation of the 
coefficients. 

A detailed description of the EZW algorithm as well as an application example 
may be found in the Appendix. 

In Figure 8.46 we present all the steps of the decoding phase on a real image in 
order to highlight the progressive improvement of the quality of the restored image. 
We decompose at level 5 with the db1 wavelet an image whose size is 128 × 128. It 
comprises 255 shades of gray and its storage therefore requires 16,384 bytes. The 
EZW algorithm uses 4 symbols for the principal stage and 2 for the secondary stage. 

Let us briefly comment on the results obtained. The images in the first row of the 
figure are of bad quality and unusable. The sixth and especially the seventh image 
already make it possible to distinguish the principal zones of the original image. 
They are sufficient to distinguish a seated woman. Edges, nevertheless, remain badly 
defined. The quality of the reconstruction then gradually improves and the image 
obtained after nine iterations of the algorithm is almost perfect, at least visually. In 
order to considerably reduce information to be stored or transmitted, we still have to 
efficiently code all the symbols produced. 

 
A2 H2

V2 D2

H1

D1V1
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Figure 8.46. EZW algorithm: at the top, results after 1, 2, 3, 4 and 5 iterations; in the 

middle, results after 6, 7, 8, 9 and 10 iterations; at the bottom on the left, results 

after 11, 12 and 13 iterations, and at the bottom on the right the original image 

8.6.3.3. Comments on the JPEG 2000 standard 

In addition to operations linked to wavelets (DWT and IDWT) and the aspects 
associated with coding and quantization, the JPEG 2000 method comprises many 
technical subtleties. It is the effectiveness of the system on the whole which led to 
JPEG 2000 becoming the standard for image compression (see [SKO 01] and [JPE 
00]); here we will only provide some indications. 

The JPEG 2000 system was constructed to satisfy three major objectives. First of 
all, to offer a certain universality: for a broad family of color images to achieve 
better performances than existing standards for strong compression ratios, without 
degrading them for lower ratios. Then, to enable a progressive transmission of 
compressed images with increasing quality until a lossless compression is achieved 
and to make it possible to define specific areas that have to be coded with greater 
precision. Lastly, to ensure good data security and robustness with respect to errors 
during transmission. 
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The complete procedure to code a color image thus includes several operations; 
let us cite in particular: 

– original image decomposition in color components; 

– cutting (optional) of the components in equal rectangular zones; 

– normalization of the coefficients; 

– application of the DWT to each rectangular zone; 

– quantization of the decomposition coefficients for each rectangular zone; 

– coding of coefficients (coding can differ according to zones in order to 
improve quality). 

For example, in order to illustrate the second point, the image of the porch  
(512 × 512) can be cut up into 16 square zones of size (64 × 64), as in the left part of 
Figure 8.47. The choice of cutting can influence compression performances. On the 
right, we find level 2 analyses of each “zone” (the details are displayed in negative). 
The EZW algorithm is then applied to each of these decompositions. 

              

Figure 8.47. Cutting up the porch image (512 × 512) into 16 square zones of size (64 × 64), 

and level 2 analyses of each “zone” (the details are displayed in negative) 

 



 



 
 

Chapter 9 

An Overview of Applications 

9.1. Introduction 

9.1.1. Why does it work? 

As this chapter shows, wavelets are used in a large number of fields. Let us just 
mention geophysics, astrophysics, quality control, biology and aural signals in 
medicine, imagery in all its aspects and medical imagery in particular, compressed 
representation of fingerprints or photographs, satellite imagery, coding of video 
signals, modeling of traffic in communication networks like the Internet and analysis 
of atmospheric or wind tunnel turbulence. Even after years of work we remain 
surprised by the variety of domains concerned and the problems dealt with. 

A question arises from the start: how is it possible that the same tool works for 
so many applications? Of course, it is impossible to find a single really satisfactory 
answer, but several reasons appear plausible. In his book of historical presentation of 
wavelets, Hubbard (see [HUB 95] p. 139-173) proposes several clues on very 
diverse levels: 

− first of all, the wavelets method is new in signal processing. It brings technical 
innovations and makes it possible to look at traditional information through original 
easily accessible tools. A new dictionary of shapes is created, connecting signal 
characteristics to those of wavelet transforms, enabling us to infer properties of the 
signals based on coefficient structures. There are, for example, visible cones in 
continuous decomposition, which indicate a serious signal irregularity. It is also 
known that zero coefficients in a discrete decomposition indicate that the signal is 
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smooth, that nothing changes. Fractal signals have recognizable shapes in terms of 
wavelet coefficients; 

− the wavelets technique, moreover, constitutes a tool for local analysis, where it 
differs strongly from a Fourier analysis. The wavelet can focus its glance locally by 
inspecting the neighborhoods of a point. Then the information coded in the 
coefficients is entirely determined by the values of the signal close to the wavelet 
support. Such work based on using local zones can be found in every local 
technique. It is supplemented by a synthesizing work which carries out the 
comparison of the results obtained in various points. To some extent we globalize 
local analyses while locating, for example, zones of similar local behavior, thus 
determining various interesting zones; 

− as often is the case in signal processing, little information is useful a priori, for 
analysis as well as for complex processing like denoising. This advantage which 
renders the model light under which processing is adapted, ensures adequate 
processing of large signal families. Of course, from the point of view of modeling, 
hypotheses on the law of noises (Gaussian hypotheses) or on the nature of the 
searched signal (Bayesian hypotheses) often facilitate the work. Naturally, if specific 
knowledge is available, there is often a more adequate technique, which is less 
universal and more effective than the wavelets; 

− wavelets constitute bases, in the vectorial sense of the term, spaces where 
signals “live”. They represent all the signals of these sets. These bases are often 
orthogonal. The role of this characteristic should not be underestimated: by allowing 
an economic representation it particularly ensures the inversibility. In other words, it 
is not only possible to reconstruct a signal from co-ordinates, but the reconstruction 
also works in another way. Let us imagine that we are authorized to transform the 
coefficients, for example by removing some well selected ones, enough so that the 
effect is visible but not so much as to destroy the principal contents of the message. 
Then the inverse transformation reconstructs a signal which is often more 
comprehensible than the original signal. It is thus possible to act on the coefficients. 
For wavelets operating very locally, the coefficients depending on a small zone of 
the signal, the reconstructed modification affects and transforms only a small zone 
of the synthesized signal; 

− wavelets analyze the signal scale by scale. They are used, as many authors say, 
as a microscope and mathematical and numerical zoom. They look at the signal with 
various resolutions, as in geography maps with different levels of detail. Each point 
is sounded, very finely on a small scale in a small zone, then less finely on an 
average scale and, finally, coarsely on a large scale. The neighborhoods observed 
have variable sizes, a whole continuum of sizes is treated by tools whose resolution 
covers a large band. The same moment is simultaneously observed from several 
points of view, on different scales; 
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− wavelets make it possible to characterize signal spaces which have been 
somewhat ignored before because they are difficult to handle, in particular Besov 
spaces. They contain functions which can present parts less regular than the 
derivable functions, separated by discontinuities. These signals are difficult to tackle 
with other currently available tools. 

9.1.2. A classification of the applications 

It is never easy to classify practices or applications because they often 
simultaneously use several aspects of the technique. Nevertheless, we propose a 
ventilation “directed by wavelets”. 

The first classification divides the applications into three fields. It separates the 
applications where the scale aspects dominate from those in which specific aspects 
dealing with time or space are prevalent and, finally, applications using the 
possibilities of representation offered by the wavelets. The tables which follow refer 
to the applications presented in the remainder of the chapter or to others found in 
other works. 
 

 Scale aspects for signals and images Time or space aspects  

Determination of trends. Calculation 
of approximations, smoothing. Ruptures. Edges. 

Problems 
Decomposition, superposition, 
separation. 

Fast evolution: phenomena of short 
duration, transitory. 

Modeling of traffic of 
communication networks: Internet. 

Detection of pathological events: 
epileptic crisis, evoked potentials in 
EEG. 

Intermittency in physics: pressure 
holes in a field. Biomedical signals: 

mammography. Industrial monitoring of gears for 
location of ruptures. 

Non-destructive control: detection 
of dysfunctions in process control. 

Fields 

Scale laws in physics:  

turbulence. 
Underwater signals. 

Table 9.1. Classification of the applications according to the scale, time or space aspects 
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By using all the characteristics as a whole, wavelets are useful as a 
representation tool. 

 

 On the whole 

Simplification. Economic representation. 

Problems 

Pattern recognition. Classification. 

Denoising of biomedical signals and medical images. 

Video coding, coding of animated images. 

Compression of photographs, of video images. 

Classification of star spectra. Classification of eating behaviors. 

Detection of boats, helicopters by signature recognition. Detection of 
seismic jolts. 

Classification of acoustic signals. 

Fields 

Numerical approximation of linear operators. 

Table 9.2. Classification of applications where time and 

scale aspects are regarded as a whole 
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9.1.3. Two problems in which the wavelets are competitive 

Denoising and compression are two problems solved well by wavelets and are, 
nonetheless, still subject to development. The techniques are detailed in Chapters 7 
and 8. We only summarize some useful ideas in the application files, where they 
have not yet been included. 

Denoising 

The general spirit of modeling distinguishes the useful signal from the noise. 
Noise reduction, which consists of, according to the beautiful expression of V. 
Wickerhauser quoted in [HUB 95], “cut the weeds and spare the daisies”, includes: 

− suppression of noise to locate great, often slow, evolutions associated with the 
trend or smooth zones; 

− search and modeling of non-smooth parts varying quickly but stable enough, 
characterized by flat spectra whose most usual representative is white noise, or by 
textures, zones exhibiting a repeating pattern; 

− suppression of the irrelevant part to preserve the interpretable part. 

We come across denoising in several of the applications indexed in this chapter. 

Compression 

Compression compacts information to preserve or transmit it. To some extent, it 
bears a greater resemblance to denoising, with which it shares an end of the 
technical processing chain. However, apart from noise reduction, it optimizes a 
criterion which is a direct function of the scarcity of the coefficients preserved – in 
the sense that it is a question of restoring the original object in the most accurate 
manner possible with some information given a priori. 

9.1.4. Presentation of applications 

In order to conclude this introduction in the rows of Table 9.3 we find the 
applications detailed in the rest of this chapter and, in the columns, the topics or the 
fields with respect to which they are introduced. 
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Wind gusts X   X  X   

Seismic jolts X   X     

Bathymetry X    X  X  

Turbulence X   X  X X  

Coding ECG signals  X  X    X 

Eating behavior  X  X  X   

Fractional wavelets and 
imagery NMR 

 
X 

  
X 

   

Wavelets and biomedical 
sciences 

 
X 

  
X 

   

Transitories underwater 
signals 

  
X X 

 
X 

  

Statistical control of 
processes (SCP) 

  
X X 

 
X X 

 

Compression of industrial 
information 

  
X X 

 
X 

 
X 

Table 9.3. Distribution by field of the applications presented 

Many works assemble wavelet applications in very varied fields; references to 
them appear at the end of this chapter. 

We have preferred, rather than to summarize these books, to which the reader 
may refer, to analyze other sources, according to the following framework. Each 
application is centered around a reference cited at the beginning of the 
corresponding section and presented by its object, its data, the techniques used, the 
results and the role of the wavelets.  
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9.2. Wind gusts 

Objective 

In [LIU 94] the objective is to characterize ocean winds during their formation 
phase, their growth and the period of full development. 

Data 

Measurements of wind and wave heights were made during the large storm on 
October 26, 1990 at sea (Atlantic Ocean), on the basis of 10 recordings a second, 
producing 100 sets of 1,024 measurement points and covering the total duration of 
the storm. The intensities of winds range between calm and strong winds of 18 m/s 
(64.8 km/h). The waves reach 7 meters in height. 

Technique 

The spectrum, cospectrum, coherence and quadrature are usually defined and 
studied by spectral analyses. These concepts adapt to the wavelets framework by 
replacing the base of the complex exponentials intervening in Fourier with wavelets 

,a bψ . The energy of the decomposed signal is then analyzed according to time and 
scale. For one-dimensional signals the analysis is traditional. For signals with two or 
more dimensions processed simultaneously, the study becomes multivariate and then 
more specific. 

If X  and Y  are time-series and XC  and YC  are the corresponding continuous 
decompositions, then for a wavelet we define: 

− wavelet spectrum: 

( ) ( ) 2
, , )X XW a b C a b=  

− wavelet cross spectrum: 

( ) ( ) ( ), , ,XY X YW a b C a b C a b=  

− coherence: 

( , )
( , )

( , ) ( , )
XY

X Y

W a b
a b

W a b W a b
=Coher  
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− quadrature spectrum: 

2
( , )a bCoher  

The Morlet “wavelet” seen like ( )

2

2

t
imtt e eψ −=  is not an admissible wavelet 

because ( )ˆ 0 0ψ ≠ , but for large enough m  this condition is almost satisfied.  

Results 

The wavelets are used for three goals: detection of group waves effects, analysis 
of the development of waves due to the wind and breaks in the waves: 

− Large waves arrive in sequences, making the underlying process non-
stationary. To determine their length we count the number of waves whose size 
exceeds a preset level. From the wavelet spectrum (resulting from a continuous 
analysis) of the sea level, coded in frequency rather than in scale, we deduce the 
curves of isoenergy. High energies appear with the help of the contour lines grouped 
in homogenous zones, delimiting the time periods of the various groups and the 
bands of frequencies covered (see Figure 9.1). By synthesizing the durations, the 
frequencies and the number of waves, we find that a linear relation links the duration 
(normalized) to the energy (also normalized) within the groups of waves. 

− Crossed spectra, when taken as a whole, are difficult to interpret. However, the 
analysis of some frequencies and of the phase of the coherence function makes it 
possible to draw conclusions. We find that, although the growth of waves is very 
complex, the strong energy components of wind and waves are in phase. This result 
clashes with the working theory that connects wind average to waves. Energetic 
waves appear in groups which constitute a basic element of understanding the wave 
process. Moreover, the phenomenon acquires power mainly in these regroupings. 

− Wave breaks are a central phenomenon in the exchange of gas between the 
ocean and the atmosphere and the exchange of moment between the wind and 
surface. Usually we fix a limiting value on the slope of the signal associated with the 
wave beyond which the wave breaks. In simpler terms, we can consider that the 
rupture occurs when acceleration towards the bottom exceeds a preset proportion of 
gravity driven acceleration. This approach can be transcribed in the context of 
wavelets. Heuristic ideas, very technical, make it possible to locate the moments of 
“wave rupture” on the signal. They show a relation that is closely affine between the 
proportion of the breaks and wind speed, corroborating existing results. 
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Figure 9.1. (Extracted from [LIU 94] p. 159): wind speeds are represented in the upper part 

of the figure. The lower part shows the wavelet spectrum of the signal using the Morlet 

wavelet. Time is measured along the x-axis and frequencies are located along the y-axis.  

The energy is constant for each contour line. These lines delimit the time  

and frequency zones of strongly energetic wind 

Role of the wavelets 

As usual, wavelets analyze the local distribution of the energy of a scalar signal. 
They also compare time shifts and phase shifts, which appear in a couple of signals. 
They supplement the possibilities offered by the cospectra of the Fourier analysis.  

9.3. Detection of seismic jolts 

Objective 

In [ANA 97] the issue is to automatically identify various components, usually 
called P and S, of a seismic signal, short and non-stationary, using wavelets as a tool 
of pattern recognition. 

The seismogram records motion in three directions: two in the horizontal and 
one vertical. Usually, the location is based on several ground detectors. We may, 
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however, have to use just one sensor, especially for events concerning small regional 
events. 

The significant features are retained over several levels. The analysis deals with 
a tri-varied recording. The detector locates the part P by using information known as 
polarization through the scales. The analysis of the part S, which is a shear wave, is 
based on the relationship between transverse and radial amplitudes seen across the 
scales. 

The seismic signals are modeled as the convolution of filters representing the 
medium and fundamental sources, which represent vibrations of the ground due to a 
tremor or an explosion. 

Data 

The available period covers 5 years and starts in 1990. The measuring site is 
located in Spain and has recorded 23 seismic events within a radius of slightly more 
than 2,500 km.  

Technique 

Several wavelets resemble an interesting signal, either in its part P, or in its part 
S. It is the case of the db12 wavelet, of some biorthogonals and of wavelets 
proposed by Vetterli. 

The determination of the input of P and then of S is done in two stages: 

− stage 1. Measurements are three-dimensional. The arrival of the compression 
wave P produces a “transition in the rectilinearity function FC ”, defined later on. 

The signal covariance matrix at the moment t  is a 3 × 3 matrix noted ( )M t . A 

measurement of linearity consists of ( )
( )

( )
2

1

1
t

F t
t

λ
λ

= − , where λ  indicates the 

ordered eigenvalues of ( )M t  starting with the largest of them: 1λ . Linearity 

corresponds to 2 0λ = , that is, 1F = . M is estimated in various time bands. The 

function F  is calculated as well for the raw data as for the coefficients of each scale 
j  of the wavelet decomposition. Scales 1 and 2 primarily contain noise and after 

scale 8, F  is practically equal to 1. The functions jF  for 3 8j≤ ≤  are grouped 

into a synthetic inter-scale linearity function j
jFC F= ∏ , whose maximum 

locates the arrival of P;  

− stage 2. Identification of the phase S. The arrival of the wave S is detected by a 
function of the coefficients of wavelet decomposition on 10 scales of radial and 
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transverse directions. This function is calculated after a change of reference mark in 
the plane aligning one of the axes with the direction of the source of the wave S. 
Several wavelets have been used; 

The results obtained are the following: 

− results for the P wave. Algorithmic detection is compared with an analyst and 
a technique based on a short term/long term ratio. The algorithm is effective when 
compared to the analysis, the errors of the two approaches not being deeply 
different. It is better than the short term/long term ratio, in particular, when the 
energy of the signal is weak (revealing case of algorithm quality); 

 

Figure 9.2. Wavelets resembling the interesting signal 

− results for the wave S. The detection of the wave S is more difficult than that 
of the wave P and the results are worse. Nevertheless, they seem better than those of 
an expert. The result depends on the wavelet and the useful one resembles the most 
to the signal being detected. The winning wavelets are those in Figure 9.2, the 
Vetterli-22 gaining 9 times out of 23. The resemblance to the signal is visible in 
Figure 9.3. 
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Figure 9.3. (Extracted from [ANA 97]): two shapes of seismic signals and zooms around the 

event. We can compare the shapes of the start of the signals and the shapes  

of the wavelets in Figure 9.2 and note that they correspond well 

9.4. Bathymetric study of the marine floor 

Objective 

In [LIT 94] the issue is to chart marine floor areas in order to locate shapes and, 
in particular, to locate the strong escarpment declivities. The zone covered is in the 
North Atlantic and shows a central valley oriented S/E-N/W, zone of the tectonic 
plates separation, framed by escarpments. It measures 100 km × 70 km. The depths 
vary between 1,800 m and 4,000 m. 

Data 

An “echo sounder” mounted on a boat traversing the zone to be covered collects 
the signal. The typical image has as a size of 755 points along the longitude 
direction by 495 along the latitude direction. 

Technique 

It is a technique of image improvement and pattern detection of shapes by using 
a wavelet based on B-splines tensored with a filter. The function is rotated in the 
plane so that its principal direction will be that of the required edges. The derivative 
of the cubic B-spline provides another function, which locates the transitions 
between valleys and escarpments. 
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Results 

The required shape is a long, rectilinear, narrow edge whose dominant 
orientation is parallel to the axis of the expansion of the earth’s crust. To locate this 
shape, the wavelet acts mainly as an edge detector. Figure 9.4 shows the results. The 
required lines are parallel to the central valley. They are difficult to locate on the 
basic decompositions and are discovered much better through the visualization of 
local minima and maxima (by traversing the image from the East to the West). 

Role of the wavelets 

“The wavelets decomposition of bathymetric data reveals structures and patterns 
which are easily overlooked in the raw data”. The wavelet produces: “a qualitative 
image enhancement and a qualitative fault scarp identifier”. “Wavelet analysis offers 
a useful method for decomposing the texture of the seafloor to help understand 
processes which occur at many different scales” (quotations extracted from [LIT 
94], p.167 for the first and p. 180 for the two following ones). 

 

Figure 9.4. (Extracted from [LIT 94]): detection of edges on the bathymetric  

image of the marine floor using a wavelet based on B-splines 

9.5. Turbulence analysis 

Objective 

The study of Papanicolaou and Solna [PAP 01] deals with the famous 
Kolmogorov turbulence law, which links energy to scale. It provides a 
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phenomenological description of the velocity field in the atmosphere and is 
expressed by a power law. The average square of the increments of the velocity xV , 

for a large range of scales, is modeled by 

( ) ( )( ) 2/32 2
0 0x x vE V x u V x C u⎡ ⎤+ − =⎢ ⎥⎣ ⎦ . 

The important thing in this formula is its power form and the order of magnitude 
of the coefficient (here 2

3 ). 

The two basic ingredients of this type of study are: 

− on the one hand, the model of the process called fractional Brownian motion 
and noted HMBF (which is the French abbreviation) which depends on a parameter 
H  (or one of its extensions which allows the variation of H ); 

− on the other hand, the wavelet spectrum, which generalizes the usual spectrum 
based on the Fourier transform.  

The wavelets harmoniously introduce the decompositions according to the scales 
involved in various estimation techniques. 

Let us say a word on the fractional Brownian motion HMBF . It is a continuous-
time process, which resembles a usual Brownian motion whose derivative is a white 
noise. It is Gaussian, self-similar in distribution and the variance of the increments 
depends on H  in the following way:  

( ) ( )( ) 2 2H
H HVar MBF t MBF s t sσ− = − .  

The extension of HMBF  to the ( )H tMBF  or ( )HMBF λ , making it possible to 
make H  depend on time or frequency, is important since situations compatible with 
models with a constant parameter seem rare. These new objects are used, for 
example, in the modeling of vertical turbulence. Additional information can be 
found, for example, in [BOS 00] and [DOU 03]. 

Data 

The data comes from a lidar emitting a laser beam, delivering measurements 
from which atmospheric temperatures at various altitudes are deduced. The 
recordings are long and include n = 4,200,000 vertically spaced points of 2 cm. They 
cover a vertical more than 80 km long. 
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Technique 

The very first methods of decompositions of DWT type using around 20 dyadic 
scales show that any modeling, which would provide a power law, should allow the 
parameter representing power to vary with altitude. The model is then local. 

The work consists of finding a partition of the vertical line (altitude) and 
calculating the corresponding estimates of H . The technique is as follows: 

− choice of the bands of values where the parameter can be regarded as constant; 

− estimation of the values of H , parameter which varies with the segment. 

Results 

We know that, according to the value ofH , the memory of the process is short 

or long. The results locate 
1

3
H 0  in the zone of the short memory values, 

corresponding to a theoretical spectrum of increments of the shape 
5
3λ

−
 in the 

neighborhood of the 0  frequency. 

An important part of statistical work consists of: 

− determining segments in which H  can be regarded as constant, segments 
which, in order to ensure a precise estimate, must be as large as possible; 

− verifying that the estimates do not depend too much on the partitioning. The 
vertical is partitioned into segments of 655 m, a value determined following many 
tests. Energy analyses make it possible to notice that low altitudes present lower 
energy than the high ones [PAP 01]. 

The statistical technique is based on several ideas, including the one that 
connects in one HMBF  the variance of the wavelet coefficients at level j  to j  
itself. The estimate Ĥ  of H  is obtained by regressing the logarithm of this variance 
over the logarithm of j . The study is a little more complicated and a modeling of 
H  using a random walk is introduced. 

The only wavelet used in this study is the Haar wavelet. The scaling function 
ϕ does not appear. In fact, only the multi-resolution aspect is useful, at the expense 
of other wavelet properties. The wavelet simultaneously carries out the calculation 
of the increments of the measurements and the low frequencies filtering. 

Percival and Guttorp [PER 94] study a similar problem concerning vertical 
shearing forces in the ocean. The data are collected every 0.1 m, differentiated and 
pre-filtered in order to preserve the non-noised evolutions. A reasonable model 
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postulates the evolution into power law ( )S αλ λ=  of energy according to depth, 
at least for a rather broad range of scales. The model is estimated by the use of SWT 
wavelet decomposition, needed for the calculation of the variance of the wavelet 
coefficients for each scale level. This estimator is linked to the Allen variance, 
famous in the non-stationary signal processing. 

These studies are useful in the modeling of turbulence because they specify the 
link between interesting and difficult to model data, the local power law, Brownian 
modeling and wavelets. 

9.6. Electrocardiogram (ECG): coding and moment of the maximum  

Objective 

In [ANA 95] the issue is the adequate coding of the wavelet analyses of long 
signals. This problem arises for biomedical signals for the purposes of storage and 
transmission. The compression ratio must be increased while maintaining the 
distortion at an acceptable level in order to allow a clinical examination. The 
essential shapes of the cardiac electric signal are the P shapes, the QRS complex and 
the T shape (see Table 9.4). 

There are classical coding techniques. They are based on “DPCM (scalar and 
vector coding), entropy coding, Fourier or Walsh transformations” [ANA 95]. 

An ECG is a short and quickly variable signal and is, thus, a good candidate for 
wavelet analysis. The amplitude, duration and rhythm enable the identification of 
the anomalies. The operation of the cardiac muscle is described on the basis of the 
elements of Table 9.4. 

Characteristics of the wave Activity 

P Electric activation of Atria 

QRS Electric activation of the ventricles 

P-QRS Time Duration of Atria-Ventricle electric conduction 

T Repolarization of the ventricles 

Table 9.4. The essential shapes of the cardiac electric signal 
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Data 

100 ECGs are analyzed by three wavelets: the db12, a Vetterli-Herley wavelet 
and a biorthogonal wavelet. 

Technique 

Scalar and vectorial codings are used on different scale bands. The former for 
small scales with signals changing quickly; the latter for long and slowly changing 
signals. The wavelet decomposition goes up to level 5.  

The coding dictionary is built around the sequences 5 5 1, ,...,a d d  by the 

algorithm of average points (k-means) and the average points are the codes. The 
number of learning vectors is large and depends on the scale. 

Results and advantages of wavelets 

The gain is significant compared to the usual methods. The two evaluation 
criteria are the bit per sample ratio and a quadratic error of reconstruction. The 
Vetterli-Herley wavelet produces the best results. 

Supplements to an older work 

The study [ANA 94] proposes an estimate of the moment of the maximum of the 
wave P using wavelets. We start with many cardiac cycles, which are signals of 
length 316 points. We construct a study data set by associating to each cycle 4 new 
signals constructed by moving the P wave and the QRS complex at random. 

Decomposition uses a quadratic spline wavelet with compact support and 
wavelet coefficients of a single scale constitute the data input of the research 
procedure for the moment of maximum. A neural network determines the required 
moment. We compare the rough data processing with that of the wavelet 
coefficients. The qualities are similar, the wavelet analysis is used here as a 
preprocessor for the main treatment and saves the quantity of processed information. 
From this point of view the wavelet is useful. 

9.7. Eating behavior 

Objective 

Tate [TAT 95] and [TAT 96] studies the influence of the type of fat ingested by 
an individual on the fat stored by the body. The basic measurement is a magnetic 
resonance spectrum providing information on the chemical composition of fat. The 
peaks of the spectrum represent nuclei in various molecular sites, resonating at 
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slightly different frequencies. The surface located under each peak estimates the 
quantity of the substance associated with the peak. In vitro, the peaks are pointed. In 

vivo, the identification of the peaks is much more difficult, so much so that it is 
desirable to avoid it. 

Data 

The database is a set of spectra 13C  of subcutaneous fat taken from patients’ 
thighs. The volunteers are either vegans ( 33n = ), vegetarians ( 8n = ), or meat 
eaters ( 34n = ). A pre-processing realigns the spectra based on the largest peak; 
512 points are preserved and the total energy is normalized to 1. 

Technique 

Each spectrum is broken up into its wavelet coefficients by the db20, recoded 
using the first 64 coefficients. A discriminant factorial analysis classifies the set of 
the 75 spectra without it being necessary to measure or to identify the peaks of the 
spectra. 

Results 

A jackknife technique makes it possible to select the best discriminant factorial 
components, thereafter used in the discrimination stage. The properties of good and 
bad classifications are indexed in Table 9.5. 

 Good 

classification 
Bad 

classification 
Rate of good 

classification 

Vegetarians excluded  63 4 94% 

Vegetarians included 60 15 80% 

Table 9.5. Discriminant results obtained using wavelet-based classification 

These results improve the previous studies using spectrum peaks’ energies, in 
which 20 cases were classified badly when the vegetarians are included and 5 when 
they are excluded (see [TAT 96]). 

Advantage of wavelets 

Although working blind, without information on the signal to be analyzed, 
wavelets select information by strongly reducing its quantity. The later statistical 
stages are simplified and the quality of classification improved. 
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9.8. Fractional wavelets and fMRI  

Objective 

The purpose of the article [FEI 00] is to discuss the determination, in a rather 
broad family, of the wavelet to choose in order to ensure a good analysis of the 
fMRI (functional magnetic resonance imaging) data. Optimization is done for 
known activation patterns. 

Functional imagery highlights the cortical zones of a patient, activated by 
external stimulation or during a cognitive or motor task. 

Data 

The research in the large majority of works is structured by an experimental 
design whose factors are the subjects and the working conditions. Let us note 

( ),
A

I x y
τ

 and ( ),BI x y
τ

 a sequence of images indexed by the time τ  for the two 
conditions A  (activation) and B  (rest), and pose: 

( ) ( ) ( ), , ,D BA
I x y I x y I x y

τ ττ
= −  

Prior to any treatment, the data are realigned; a motion correction is enforced and 
drifts in time are removed.  

Technique 

The family of wavelets considered, called fractional splines, generalizes the B-
splines and was introduced by Unser. It is constructed on the basis of power 
functions x n

α
+−  where ( )max ,0x x+ =  and exists in causal and non-causal 

symmetrical, biorthogonal or orthogonal shapes. The associated filters do not have a 
finite impulse response but are, nevertheless, simple. The design parameter used for 
optimization is α . 

To detect an activation we calculate the wavelet coefficients WI τ
of DI τ

. A 
statistical test on the coefficients makes it possible to reduce noise and then to 
evaluate the significance of activation. 

In an fMRI the traditional technique is called SPM (statistical parameter 
mapping). It filters the images before the statistical test. The pre-filtering 
complicates the situation by making the noises of various pixels of the resulting 
image dependent. 
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Results and role of the wavelets 

The zero hypothesis of the statistical activation test concerning the pixel ( ),x y  

is ( )( ), 0WE I x y = . The test is based on a  Student’s t  distribution, 

( )

( )
,

,
W x yI

t
s x y

= , where ( ) ( )
1

1
, ,

n

W WI x y I x y
n ττ=

= ∑  and ( ),s x y  is the standard 

deviation of ( )( )
1, ,

,W n
I x y

τ τ= A
. As the test bears on each pixel, the fine-tuning of 

the critical value tthreshold is done, as usual, using conservative techniques. 

Optimization proves to be important. The selected criteria differ for simulated 
and real data. In both cases the gain is large between an optimized choice and a 
merely reasonable choice. 

The new wavelets are better than the tested Daubechies wavelets. We also find 
that: 

− causal wavelets are better than symmetrical ones, the former presenting a 
better spatial localization; 

− biorthogonal and orthogonal wavelets are better than the Daubechies wavelets, 
at least when the noises are large; 

− the optimal degree α  differs from one situation to another. It is close to 1 in 
the following expression of the biorthogonal filter of the two scales relation for the 

scaling function ( )

111
2

2

z
H z

α+−⎛ ⎞+ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
. To implement the test it is rare that 

the wavelet decomposition requires more than two levels. 

Detection is considered to be, on the whole, effective and robust with respect to 
the different sizes of the activated zone and to the noise. “Because of its multi-
resolution nature, our method is especially suited for detecting shapes with various 
frequency contents, such as mixtures of large and tiny activation zones” [FEI 00]. 

9.9. Wavelets and biomedical sciences  

Objective 

We focus here on a very interesting synthesis paper [UNS 96] which, although 
published in 1996, still gives a broad, very clear and relevant review of the 
applications of wavelets in biomedical sciences.  
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The objective is thus to analyze the place of wavelet processing in the biological 
and medical domains. The problems of the biomedical sector are, in general, badly 
posed and require the development of solutions that are more robust than optimal. 
Wavelets enter a process aiming to discover a dysfunction, comparing the normal 
and the abnormal, and improving the collected information to ensure a clearer job. 

Data 

The biomedical sector is characterized by the large variability of available 
signals. The recordings are often complex: mixtures of signals localized as spikes in 
EEG and diffused signals, like the cardiac background noise or the blood flow. 

Technique 

The first partition of applications separates the work on biomedical signal from 
image processing. 1D applications cover acoustics, ECG and EEG. 2D applications 
complete ad hoc work, such as tomography, NMR or functional imagery as well as 
rather traditional work, such as noise reduction, improvement of image contrast or 
detection of malformations (mammography). 

All the types of wavelet analyses find an application: continuous or discrete, 
redundant (continuous or in frame) or economic (orthogonal, bi- or semi-orthogonal 
wavelets) or wavelet packages analysis. 

Results and role of the wavelets 

Each characteristic of the wavelets is associated to one or more uses. Let us cite 
some of them: 

− as filter banks wavelets separate the frequency bands and evaluate the 
distribution of energies to recognize a distribution. It is the case of the analysis of 
the turbulent heart sounds in order to identify coronary artery disease; 

− as filter banks wavelets are used for denoising and improvement of image 
contrast; 

− as bases, tools of representation in which each coefficient counts, wavelets are 
used as an economic coding tool, since nothing is in excess and that there is enough 
information to describe exactly what is important. In contrast, compression admits 
that any description of an object is partially redundant or useless; it determines the 
important information and then codes it. The wavelet is then useful, in this context, 
to build the hierarchy of the information in order of importance; 

− image processing is also based on the classical representation, introduced by 
Mallat, of signals by the lines of maximum of the continuous analysis; 
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− the analysis by level of scale provides a technique of detection of shape and, 
thus, constitutes a zooming tool (see Chapter 5). Here is the reason: if a signal in an 
unknown 0t  point and on an unknown 0a  scale resembles the shape of the wavelet 

0

0

t t

a
ψ
⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠

, the associated wavelet coefficient is large and makes it possible to 

estimate 0t  and 0a . This property is used to study spikes in the EEG of epileptic 

patients as well as in the detection of complex QRS from the ECG; 

− the wavelets having zero spectra in the vicinity of the 0 frequency and even 
“very” zero (the zero is of an order higher than one) make it possible to make the 
colored noises whiter. By filtering the noise by convolution, the wavelet seen as a 
filter multiplies the signal spectrum by that of the filter and cancels the energy at 
low frequencies. Thus, filtering renders nearly independent the noises with a long 

memory whose spectrum ( ) ( )2 1Hf λ λ− +∼  is infinite, with 
1

1
2

H< <  in the 

vicinity of 0λ = ; 

− wavelets ensure a simultaneous time-scale analysis and compete with time-
frequency analysis tools, which are the short-time Fourier transform, also called the 
Gabor transform (see Chapter 2), or the Wigner-Ville analyses. 

9.9.1. Analysis of 1D biomedical signals 

9.9.1.1. Bioacoustic signals 

The analysis of aural signals emitted by the heart, classified into “sounds and 
murmurs” constitutes a basic monitoring technique. The wavelets supplement the 
usual time-frequency techniques, separating components that are difficult to 
dissociate (like “aortic and pulmonary valve components” [UNS 96] p. 630). The 
more diffuse sounds are modified by vasodilator drugs and the changes are 
appraisable by wavelets, thus enabling the experiments on the classification of 
subjects suffering from coronary disease. 

9.9.1.2. Electrocardiogram (ECG)  

The cardiac signal breaks up into sequences, the most important of which is 
called the QRS complex. The location of shape by wavelets makes it possible to 
discriminate between normal and abnormal patterns. Wavelets tested on a usual 
database prove to have an excellent rate of detection. Although the other methods 
could not locate them, the wavelets clearly detect small signals with rather high 
frequency appearing in the coronary diseases, infarctions or ventricular arrhythmias. 
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9.9.1.3. Electroencephalogram (EEG)  

Wavelets have proven reliable in the location of transitory characteristic signals 
mixed with normal signals. As the seizure increases, “the transient activity slowly 
develops into more nearly regular high amplitude quasi-periodic oscillations” [UNS 
96]. Very different depending on the patients, complex signals remain quite 
analyzable. Studies for neurosurgery with implanted electrodes developed fast 
algorithms for continuous analysis. When the electrodes are on the scalp, the 
background electromyogenic noise interferes with the signal. The wavelets have also 
been used in the works of discrimination on the functioning of the fetus’s brain. 

The action of an external stimulation to the patient is visible on the EEG, 
whether this stimulation is acoustic, visual or somatic. The noises are averaged 
across a great number of repetitions, typically a few hundred. Stimulation is 
locatable after a time of latency. The evaluation of this time, based on the 
distribution of the coefficients energy, enables a reliable estimate of the time 
evolution of a neurological attack such as cerebral anoxia. 

9.9.2. 2D biomedical signal analysis 

The most traditional application in biomedical signal analysis is noise reduction. 
Another is to increase image contrasts. In mammography, where a very small 
change of fabric structure can reveal the presence of a tumor or a micro calcification, 
wavelets are effective to detect such events. 

9.9.2.1. Nuclear magnetic resonance (NMR) 

Subjected to an external magnetic field of controlled frequency, the spins of the 
nuclear cores respond and increase their energy. The signal records the emissions 
coming from the return of the spins to the realignment position. The recording is 
done in a prescribed portion of space made up, for example, by a section. The 
measurement of the space density of the resonating spins provides information on 
the state of the excited medium. 

An integral formula that has to be inversed connects the measured variable to the 
space density. Usually the inversion is done in the Fourier base. The wavelets enable 
faster calculations and reduce the artifacts ascribable to the movements of the 
patients. 

In tomography the fMRI uses the multi-resolution aspects of the wavelets. “The 
information at different scales is updated at different rates; in particular, low 
frequency components can be reconstructed almost instantaneously and used to 
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estimate the motion of the object” [UNS 96], an estimate which, in turn, contributes 
to the determination of the fine structures. 

9.9.2.2. fMRI and functional imagery 

fMRI is a research tool in neurosciences. It studies “the neural activity of the 
brain in vivo” and records, for example, spatial distribution of radiotracers whose 
local changes are being followed. It is integrated in an experimental planning whose 
factors are the subjects and the conditions. 

The images are extremely noisy and variable. A multi-resolution analysis based 
on splines ensures the representation of the images and volumes. 

In order to distinguish activation from non-activation, the comparison is made 
pixel by pixel after control and compensation for the anatomical differences between 
subjects and the movements of each subject. Once realigned, the data is submitted to 
statistical tests carried out in the wavelet domain, i.e. on the coefficients, thus 
avoiding the noise and concentrating on the smoothest parts which are more 
meaningful for the image. 

The advantages of wavelets over the more traditional methods are as follows:  

− wavelets recode information in a small number of large value coefficients; 

− the signal-to-noise ratio of these coefficients is good if we find ourselves in the 
rather common situation where the noise is about the same everywhere in the 
measurement space. A good signal-to-noise ratio ensures a good detection rate;  

− finally, wavelets often have the capacity to decrease space dependences 
enabling the use of simple statistical tests. 

9.10. Statistical process control 

Objective 

The statistical process control (SPC) is a set of methods, integrated into quality 
control, enabling the development of procedures for designing, controlling and 
monitoring industrial and manufacturing processes. They are based on the modeling 
of normal operation, called controlled (or under control) operation, and on the 
definition of situations of abnormal operation indicated by the term out of control. A 
monitoring statistic is calculated and controlled regularly during successive 
samplings. As long as it remains in the controlled zone, the following sampling is 
carried out. As soon as it enters the out of control zone, production is stopped and 
the search for causes which provoked the dysfunction is initiated. The monitoring 
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statistics most usually employed are Student’s t  or its multivariate version called 
Hotelling’s 2T . Successive values are visualized on a chart exhibiting the index of 
the batch along the x-axis and the value of t  or of 2T  along the y-axis. 

When several simultaneous measurements are available, the problem is 
multivariate nature and the investigation into the causes becomes crucial and 
difficult. Despite their apparent complexity, the majority of multidimensional 
recordings depend only on a small number of dimensions: often two, sometimes 
three, seldom more, although the theoretical approach does not limit this number. 
The principal component analysis makes it possible to reduce the overall dimension 
by highlighting relevant combinations of the initial variables. It produces new 
variables, called principal factors, uncorrelated (whereas the initial variables are 
correlated). The calculation of the values of the monitoring statistics is then simple. 

When measurements are signals recorded in time, the significant components are 
usually corrupted by white or even colored noise. Wavelets are used, first of all, for 
noise reduction, but also to locate the dysfunction signals, which are transitory 
signals hidden on only several scales and occurring at moments unknown a priori. 

Hereafter we analyze two articles by Bakshi [BAK 98], [BAK 99]. 

Technique 

For 1D signals, the basic technique consists of creating several control charts, 
one for each scale, i.e. for each level of wavelet decomposition. The threshold of 
each chart is calibrated in an adapted manner but fine-tuning remains difficult. The 
levels out of control are then located, by reconstructing the associated signal, and the 
state of the process and the causes of rupture of normal operation are determined. 

For multidimensional signals the situation is as follows. Let us consider an 
example in which the time evolutions of the four process variables are as follows: 
temperature, pressure, water content and the quality of the product. The raw data is 
grouped in a 4n ×  matrix noted by ( )j

iX X= , with 1 i n≤ ≤  and 1 4j≤ ≤ , 
where i  indexes time and j  locates the variable.  

The technique is as follows: 

− decompose using wavelets on 3 levels; each jX  produces 3 details and an 
approximation denoted by 1 2 3 3, , ,j j j jD D D A ;  

− locate the levels containing mainly noise; 

− other levels (let us imagine that these are levels 2 and 3) are preserved. The 
three matrices including respectively the four details 2

jD , 1, , 4j = … , the four 
details 3

jD  and the four approximations 3
jA  are reconstructed; 
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− at each preserved level, perform a PCA. A fundamental dimension r  is 
identified, which is able to be different across the scales, and only the r  principal 
components are retained; 

− apply the inverse wavelet transform that reconstructs a denoised signal 
capturing essential information; 

− finally, the monitoring statistics is calculated using this last signal. 

Results 

Since the change from the initial basis of signal representation to an orthonormal 
wavelet basis is carried out very easily and since angles and distances are preserved, 
the calculations of APC can be performed well both before as well as after wavelet 
decomposition. One of the current orientations is based on the idea of carrying out 
thresholding on multi-scale decompositions of the principal components. 

Advantages 

Most of the SPC procedures include a significant part of know-how, built-in for 
example, in the often complicated preliminary transformations (ad hoc 
“preprocessing”). Wavelets avoid preprocessing, which constitutes a substantial 
advantage. Moreover, PCA decorrelates the various variables in space, while 
wavelets almost ensure a decorrelation in time. 

9.11. Online compression of industrial information 

Objective 

The objective is “to characterize, control and predict properties of a product, 
such as its humidity, composition and the distribution of fiber in the case of this 
application” ([TRY 01] p. 311) and to show that wavelets allow a better statistical 
control of the production process, which is continuous here. 

Data 

The near infrared spectra (NIR) are measured online in the upper part of a 
conveyor belt filled with wood chips for a Swedish company. 

The data noted by ( )( )
1,...,1000

, j i
X i λ

=
 includes N = 1,000 spectra recorded 

successively at one minute intervals and rendered discrete over 900 frequencies 
( 1,..., 900j = ) covering the band 400 – 2,000 nm. The time is indexed by i. The 

difficulties stem from the existence of large variations of moisture, temperature, 
movement of the carpet and the height of the chips. 
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Technique 

The technique is quite traditional except for a small number of particular 
characteristics. The detection of the failure events is based on the following idea: the 
events related to an abrupt change of the machine or a “shutdown” (collapse of the 
process) appear in the small scales and are definitely distinguishable from the 
derivatives and periodic variations, which, of course, appear on the large scales. The 
technique is as follows. 

The data are divided into two sets: the calibration and the prediction sets. The 
compression step is performed in two steps: 

1) row use compression of the NIR spectra using wavelet transforms; 

2) column use wavelet transform on the compressed first step result. 

A PCA model is calculated on the second step result.  

The failure detection is performed by comparing the local energy of the residuals 
to a reference. 

 

Figure 9.5. (Extracted from [TRY 01]): variations of the detection
 
statistics (noted DModW  

in the original graph) in the residual table of information for the entire prediction set. The 
residuals deviate strongly from the normal behavior 
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Results 

Figure 9.5 presents the variations of the iDW  statistics (noted DModW in the 
original graph) in the residual table of information for the entire prediction set. 
Around time 100 a large projection locates a rupture explained by the engineers and 
resulting from an empty carpet. The visible fast variations between moments 110 
and 270 are ascribable to a plant shut-down resulting in an empty conveyor belt. The 
spectra are measured every minute and the graph visualizes the large differences. 
After instant 400 there seems to be a return to normality. Nevertheless, the statistics 
retains oscillations still revealing an abnormal variation. In fact a shift of the spectra 
continues to be present. This is due to a rise in temperature. A direct approach using 
statistics similar to iDW , without wavelets and based directly on a PCA, had not 
been able to locate the spectral shift. 

Role of the wavelets 

The failures that we seek occur on different scales: they can be located in the 
form of details of the spectra or have much more global consequences. The wavelets 
are well adapted to make these distinctions. 

9.12. Transitories in underwater signals 

Objective 

The objective of [BAI 98] is to detect transient signals against background 
underwater noise. “The interesting underwater signals are acoustic waves 
superimposed on an environment” (p. 73). Typically, they consist of a “whistle” or 
short-term clicks followed by several clicks. They resemble human words but 
present a greater interaction with the background. Using wavelets instead of Fourier-
based techniques stems from the idea that wavelets provide a better time-frequency 
localization for transitories. 

Data  

The very long recording is partitioned into 0.8 second time blocks. Each block is 
sampled at 40.96 Khz producing 215 = 32,768 measurement points. 

Technique 

A transitory signal appears as a point deviating with respect to the distribution of 
the non-transitory signal characteristic. A statistical test compares the energy of the 
block with an energy reference. Each block (indexed by t ) is analyzed using 
wavelets over about 15 levels (we note the level j  detail coefficients by j

kd ).  
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The average energy of the first 7 scales noted tjx  is the basic ingredient:  

( )

( )82
2

( )8
1

1
1,..., 7

2

j

j
tj k tj

k

x d j

−

−
=

= =∑  

The time index t  is linked to the specific indices at each scale, wherefrom stems 
the index ( )k t  in the right-hand member of the preceding equality. Various 

adjustments show that only three or sometimes even the first two scales are enough: 
the useful vector appearing in the test does not use large scales corresponding to the 

low frequency parts of the signal. The useful part is: 3 2 1

T

t t t tX x x x⎡ ⎤= ⎢ ⎥⎣ ⎦ . 

The test statistic initially estimates the density f  distribution of tX  in the 
absence of transitory phenomena and in the presence of the background noise.  
Calculation is carried out over a long record taken during a reference period 
comprising only background noise. The traditional core estimator is: 

( ) ( )
( )

( ) ( )-1/2 1

3/2 23
=1

detˆ exp
22

T

t tX X S X X
−⎛ ⎞− −

⎜ ⎟−
⎜ ⎟
⎝ ⎠

∑
T

t

S
f X /

hπ Th
 

In this expression 3X ∈ {  and S  is a robust estimator of the covariance matrix 
of ( )tX  and h  is the width of the suitable bandwidth. We admit that the successive 
( )tX  (1 t T≤ ≤ ) are time-independent. Even if this assumption is unreasonable 
for the basic observations, it is more reasonable for wavelet coefficients and, thus, 
for the ( )tX  vectors. The detection rule is based on the comparison between the 
estimator f̂  of f , calculated for all the observations noted jx  made between the 
moments 1  and T , and the estimator ˆ

tf  obtained without using tX . In fact, at 
every moment j  we remove from jx  the observations which have been determined 
as deviating. 

Results 

Two signals are tested: one is synthetic and the other is real. The synthetic signal 
is constructed by adding a spoken word to a real signal recreated on the basis of 
marine background noise by an inverse short-time Fourier transform. The signal-to-
noise ratio is an adjustment parameter. The technique based on wavelets using only 
two levels of decomposition is compared to a detection based on the short-time 
Fourier transform. We split the record in time windows. In each window, the 
frequencies are partitioned into classes, for which the energy distribution is 
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compared to the average on the entire signal. We decide that a transitory is present 
in a frequency band if the energy of the band exceeds a pre-calculated threshold. For 
100 simulations the technique of wavelets detects a present transient signal well. 
However, it causes more false alarms than the short-time Fourier transform. 

The real signal includes whistles and clicks. For the 1920 blocks, the technique 
detects 727 signals. A short-time Fourier transform identifies 578 signals in 
accordance with those detected by the wavelet approach. The difference is difficult 
to explain. Nevertheless, it seems that by analyzing the recordings again, by ear, 
wavelets are right more often than the short-time Fourier transform approach. 

The technique of detection based on wavelets is new. It is, moreover, capable of 
adapting to slowly variable background noises. 

9.13. Some applications at random 

Let us, finally, mention some additional applications at random, less detailed 
than the previous ones. 

9.13.1. Video coding 

In [HEI 01] and [MAR 99] animated video images are coded by wavelets. On the 
one hand, a realignment technique makes it possible to reduce the time redundancies 
of a sequence of images and, on the other hand, an interpolation of texture improves 
the prediction. We de-correlate the wavelet prediction errors by using pre-coding 
procedures called PACC (partitioning, aggregation and conditional coding). 

The technique is as follows: time realignment uses a bilinear procedure on a 
quadrangular grid based on a model of continuous motion. The following stages are 
distinguished: 

− estimation and compensation of movement; 

− wavelet representation and quantization; 

− pre-coding (which is the original stage); 

− arithmetic coding. 

The results are definitely better than the H 263 techniques, in particular, for the 
very small rates where coders containing blocks present blocking effects. 



An Overview of Applications     309 

9.13.2. Computer-assisted tomography 

An x-ray is emitted at a body or an object to be analyzed. Its intensity measured 
at the exit point codes a balanced integral of the body’s density. Using several rays it 
is possible to reconstruct the density and to distinguish healthy zones from sick ones. 
The Radon’s integral transformation constitutes a basic tool of computer-assisted 
tomography, positron tomography and NMR (nuclear magnetic resonance). 

Traditional tomography is global; the reconstruction in a point requires the 
knowledge of the values of the integrals on the straights located far from the point. 
Local methods use only local information. The approaches with wavelets fall under 
this category. The inversion of the transform can make use of a 2D wavelet base, for 
which the nullity of moments and localization constitute an advantage (see [WAL 
02] p. 412 and [RAS 97]).  

More generally, wavelets ensure fast calculation of integral operators also 
appearing in turbulent flows. 

9.13.3. Producing and analyzing irregular signals or images 

The irregularity of a signal manifests itself in several ways. A rupture constitutes 
a form of irregularity, whereas a fractal signal presents another form: it can be 
continuous but not derivable anywhere. Undoubtedly, a good approach is to think of 
the surface, covered by an aluminum paper sheet that has been ruffled and then 
unfolded. The surface presents very small asperities, in a great number. It is not 
derivable anywhere. We can construct irregularity indicators. 

Before inventing fractals, Mandelbrot introduced and popularized fractional 
Brownian processes ( ),HMBF t t ∈ R  and 0 1H< < . They generalize the 
Brownian movement whose derivative is white noise. The increases 

( ) ( )
H HMBF t MBF s−  are centered, Gaussian, with a variance 2 2Ht sσ − , 

auto-resembling and not independent except for 1
2H = . The value of H  is an 

indicator of the irregularity of the trajectories.  

According to many authors, new signals are being introduced: in finance, in the 
modeling of rough surfaces, in the description of the borders of the cancerous cells, 
in the study of edges of clouds, etc. These signals present irregularities with varied 
scales. Wavelets are used for the analysis and synthesis of such signals and appear 
as tools for the creation of signals and surfaces as well as tools for estimating their 
characteristics (see, for example, the syntheses in the two articles by Bardet et al. in 
[DOU 03]). 
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The generators are based on random series representations of wavelet 
coefficients whose properties are rather simple. For the estimators, two ideas are 
involved. The first stems from the behavior of the wavelet Fourier transform at very 
low frequencies, which tends towards 0. Since the wavelet filters the signal, it 
destroys the spectrum of process increments, which tends towards infinity according 
to a frequency like 2Hω −  for a wavelet with a sufficient number of zero moments. 
The coefficients of decomposition, level by level, have very regular spectra and 
without bizarre behavior in the vicinity of frequency 0. These are much more 
pleasant values to handle than the trajectory itself. 

The second idea (see the article of Abry et al. in [DOU 03]) stems from the 
expression of the variance of the coefficients according to the level. The law of 
evolution is such that the logarithm of the variance is a function affine of the 
unknown parameterH . Estimating the variances for several scales is used to build a 
good estimator ofH . 

9.13.4. Forecasting 

Wavelets are used in [REN 01] to construct a predictor of signals recorded in 
time. 

The Haar wavelet is the basic tool and ensures the decomposition of the SWT 
type. Each scale is forecast independently after the adjustment of an AR, a statistical 
linear equation model of order 1 recurrence. These models are forecast easily and 
well. More precisely, in each scale j  we adjust an AR model (to detail and 
approximation coefficients, in fact with a sub-sampled family) whose order ( )p j  
can depend on the scale, we forecast the coefficients and then reconstruct the 
signals. The total forecast is the sum of the forecasts by scale. 

The wavelet transform presents the following interests: 

− it decorrelates quite well even the signals whose correlation presents a long 
range effect; 

− the Haar wavelet can be used without pre-empting future measurements. 

The authors regard this method as effective. 

9.13.5. Interpolation by kriging 

By efficiently coding different scale characteristics, wavelets take part in the 
resolution of interpolation problems. Although they do not play the central role 
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therein, they are used efficiently. Kriging (from the name of a South-African 
geologist) is one of the statistical procedures of interpolation of surfaces (functions 
of 2R  in R ) in geo-statistics [DEM 01] or for functions of pR  ( 2p ≥ ) in R . 
When information contains a lot of noise or when the variations are hardly known, 
kriging is used competitively with other methods, such as splines.  

It is the case considered in the article by Jin et al. [JIN 00], which presents a 
work with values of p  of around 10 in industrial applications. This is about the 
designing of the shapes of the nose of an airplane, car engines or calculating crashes. 
The object to be designed is represented by a computer program associating the 
value of a characteristic ( )f x  to the design parametersx . The time needed for one 
calculation is enormous, for example, around a day. An experimental design 
determines, say, 125 points ix , in which the ( )iZ x  calculations are carried out. 

The model is ( ) ( ) ( )i i iZ x f x xε= + . All in all, some ix  and ( )iZ x  are 

measured or calculated but f  and ε  are not. Moreover, for different ix , the model 

dictates that the associated ( )ixε  are not independent, making it difficult to 

estimate f . It also goes through a stage of modeling of the dependences. The 

technique, in a very summarized manner, is effective when the deterministic part has 
the shape ( ) ( )

, ,
,

j k j k
j k

f x a xψ= ∑ , where the summation relates to a sufficiently 

small set of well selected indices [DEM 01]. The estimate ,ĵ ka of the 

,j ka coefficients using ( )iZ x  leads to the estimate ( ) ( )
, ,

,
ĵ k j k

j k

f x a xψ= ∑" . 

  



 



 
 

Appendix 

The EZW Algorithm 

This appendix supplements section 8.6.3.2 dedicated to the EZW algorithm used 
in wavelet image compression. It details the operation of the algorithm and presents 
an example of application. We successively tackle coding and decoding (we note by 
⎣ ⎦x  the integer part of x ). 

For other insights on the EZW algorithm, see [CRE 97], [USE 01] and [VAL 
99]. In the book by Strang and Nguyen (see [STR 96], p. 362-383), we will find a 
detailed presentation of the various operations related to compression: quantization, 
coding, etc. 

A.1. Coding 

A.1.1. Detailed description of the EZW algorithm (coding phase) 

(1) Initialization. All the coefficients are placed on the principal list and the 

threshold is initialized by ( )⎣ ⎦maxlog 2
0 2 CT = , where maxC  is the maximum of the 

absolute value of the coefficients. 

(2) Principal stage. Go through the coefficients on the principal list in an 
appropriate order (see Figure 8.45) and compare each of them with the current 
threshold nT . Attribute one of the four following symbols to each coefficient: 

– P, if it is positive and has an absolute value higher than the threshold; 

– N, if it is negative and has an absolute value higher than the threshold; 
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– Z, if its absolute value is lower than the threshold but if one of its children has 
an absolute value higher than the threshold; 

– T if its absolute value is lower than the threshold and if all its children have 
absolute values lower than the threshold. 

Thanks to the zerotree property each coefficient that is the child of a coefficient 
already coded by a T is not coded because the decoder can determine its value. 

Each significant coefficient, i.e. of the P or N type is placed on the secondary list 
and is replaced by 0 in the principal list. 

The list of symbols is coded in the most efficient manner possible (for example, 
by a Huffman coding). 

(3) Secondary stage. For each coefficient C of the secondary list produce a 0 or a 
1. To this end write j

j n

d C T
≤

= − ∑  and compare d  to the middle of the interval 

[ ]1,n n nT T T −+ . The produced code is 0 if 1
12,n n nd T T T −

⎡ ⎡∈ +⎣ ⎣  and 1 if 
1

1 12
,n nn nd T T T T− −

⎡ ⎤∈ + +⎣ ⎦ . When binary thresholding is applied, testing the 

position of d is reduced to a comparison of bits. If the paths are numbered starting 
from 1 and at the pth path of the coefficients it is necessary to extract the (p+1) th bit 
(starting from the left) from the binary expression of C. 

(4) New threshold. We read or calculate the new threshold with 1
1 2 nnT T+

⎢ ⎥= ⎣ ⎦ , 

for example. If the minimum threshold or the desired compression ratio is attained, 
we stop; if not, we repeat stages 2, 3 and 4. 

A.1.2. Example of application of the EZW algorithm (coding phase) 

Let us consider the following simple example: 

 

57 -35 52 8 5 12 -10 5

-29 25 14 -14 3 1 5 -2

15 15 2 -9 8 -10 6 12

-10 -6 -11 7 7 -2 4 5

-2 12 -1 47 6 6 -2 3

0 3 -2 1 1 -4 3 1

0 -4 8 -4 4 5 3 3

5 14 4 3 -2 5 -4 1

V1 D1

A3 H3

H2
H1

V3 D3

V2 D2
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(1) Initialization. Cmax = 57, thus 5
0 2 32T T= = = . 

(2) Principal stage. Path no. 1 

– A3 (1,1) = 57 > 32 gives the symbol P and 57 is placed on the secondary list 
and replaced by a zero; 

– H3 (1,1) = –35 gives the symbol N since |–35| > 32 and 35 is placed on the 
secondary list and replaced by a zero; 

– V3 (1,1) = –29 gives Z because a child (V1 (1,4) = 47) is higher than the 
threshold; 

– D3 (1,1) = 25 gives T because no child (in D2 and D1) is higher than the 
threshold. It is thus useless to code D2 and D1. 

Thus, [A3, H3, V3, D3] gives PNZT. 

Continuing in a similar manner, H2 gives PTTT (P corresponds to the value  
H2 (1,1) = 52), V2 gives TZTT (Z corresponds to the value V2 (1,2) = 15 since its 
child V1 (1,4) = 47) and D2 is not coded since D3 is a zerotree). The coding process 
continues and the complete code obtained is: 

PNZT PTTT TZTT TTTT TPTT 

At the end of this main stage, the secondary list contains the values [57 35 52 47]. 

(3) Secondary stage. Path no. 1 

The elements of the secondary list are compared to the middle of the interval 
[ ,2 ]T T = [32, 64], i.e. at 48. For the 1st path of the coefficients it is necessary to 

extract the 2nd bit (starting from the left) from the binary expression of C. 

 

produced code = 1 0 1 0  

Secondary list 

symbol binary 2nd 
bit 

57 111001 1 

35 100011 0 

52 110100 1 

47 101111 0 
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After the first loop of the algorithm, the matrix of the coefficients (principal list) 
thus becomes: 

0 0 0 8 5 12 -10 5

-29 25 14 -14 3 1 5 -2

15 15 2 -9 8 -10 6 12

-10 -6 -11 7 7 -2 4 5

-2 12 -1 0 6 6 -2 3

0 3 -2 1 1 -4 3 1

0 -4 8 -4 4 5 3 3

5 14 4 3 -2 5 -4 1
 

(4) New threshold. 1
2

16T T= = . 

(5) Principal stage. Path no. 2 

We obtain the codes ZTNPTTTTTTTT and the secondary list becomes: 

[57 35 52 47 29 25]. 

(6) Secondary stage. Path no. 2 

We compare (see section A.1.1 point 3) the elements [57 35 52 47 29 25] to 16. 
We obtain 100111. They are the 3rd bits (starting from the left) of the binary 
expressions. 

(7) End of the algorithm. 

The complete application of the coding phase of the algorithm in this example is 
given below. It should be noted that the secondary stage (S6) is not present because 
the threshold is already lower than 1. 

 
(P1): PNZTPTTTTZTTTTTTTPTT 
(S1): 1010 
(P2): ZTNPTTTTTTTT 
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(S2): 100111 
(P3):ZZZZZPPNPPNZTNNTTPTTNTTTPNTTTPTTTPTTTTTTTTTPPTTTTTTTTTTT 
(S3): 0011100111100010001110 
(P4):ZZZZZZZZTTZNZTZPPTTTTPPTTTPTPTPPTNPTTNPTPPTNPPTPTTNT 
(S4): 010100011111010101001011000110000001100000 
(P5):ZZZZZZZTZZTZPZZZTTPTTTTNTTTNNTTPTTNTTTTPTTTTNPPTTTNTPPTT 
(S5): 11011100011011000000000111110010100000011001000101011011 
(P6): ZZZZZTTTTZTTZZTZTTTPNTTPTTPTTTTPTTTP 

The sequence of codes [P1], [P1, S1], [P1, S1, P2], [P1, S1, P2, S2], etc. 
constitutes a succession of increasingly precise quantized coefficient 
approximations. 

A.2. Decoding 

A.2.1. Detailed description of the EZW algorithm (decoding phase) 

The decoding phase consists of reversing the above stages.  

(1) Initialization. Initialize the values of the coefficients by zeros, the list of 

coefficients processed by an empty list and the threshold by ( )⎣ ⎦maxlog2
0 2 CT = . 

(2) Principal stage. Read the codes of the principal list one by one. Each code is 
one of the four symbols [P, N, Z, T]: 

– if the code is P, assign nT  as the value of the coefficient and add the 

coefficient (its position) to the list of processed coefficients; 

– if the code is N, assign nT−  as the value of the coefficient and add the 

coefficient to the list of processed coefficients; 

– if the code is Z or T, do nothing. 

(3) Secondary stage. Read the codes of the secondary list one by one. It 
corresponds to the list of already processed coefficients. For each of these 
coefficients, if the corresponding term of the secondary list is 0, do nothing, whereas 
if this term is 1 modify its value. If the coefficient is positive, 1

12 nT −  is added to it 

whereas if it is negative the same quantity is subtracted from it. 

(4) New threshold. We read or calculate the new threshold with 1
1 2 nnT T+

⎢ ⎥= ⎣ ⎦ , 

for example, and repeat stages 2, 3 and 4 until the list of codes is exhausted. 
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A.2.2. Example of application of the EZW algorithm (decoding phase) 

The decoding phase in the example used for coding gives: 
 

 

 

A.3. Visualization on a real image of the algorithm’s decoding phase  

In Figure A.1 we visualize some stages of the decoding phase on a real image in 
order to progressively highlight the improvement of the resolution with decoding. 
We decompose an image of size 64 × 64 at level 5 with the bior4.4 wavelet. The 
grayscale image contains 255 levels, its storage thus requires 4,096 bytes. The EZW 
algorithm uses 4 symbols for the principal stage and 2 for the secondary stage. After 
its use, the effective coding of all the produced symbols notably reduces the 
information to be stored or transmitted.  

 
 
 
 
 
 

48 -32 48 0 0 0 0 0

-16 16 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 32 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

56 -32 48 0 0 0 0 0

-24 24 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 40 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

P1 + S1 + P2 P1 + S1 + P2 + S2 

P1 P1 + S1 

32 -32 32 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 32 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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Figure A.1. EZW algorithm: at the top, the results after 1 and 3 iterations, at the bottom, the 
results after 5, 7 and 9 iterations (number of code symbols 266, 2,160 and 8,179 respectively) 

and at the bottom on the right is the original image 
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