Book: Битва за звезды-1. Ракетные системы докосмической эры

Битва за звезды: Ракетные системы докосмической эры
Не так давно один из центров по опросу общественного мнения, во множестве появившихся на необъятных просторах нашей Родины, проводил опрос на тему: «Что вы считаете главным достижением человечества в XX веке?». Ответы были самые разные. В основном молодежь говорила о революции в области информационных технологий, о появлении персональных компьютеров и Интернета. Люди постарше оказались более политизированы, вспомнили о том, что именно XX век стал временем социальных экспериментов, что привело к взлету и сокрушительному падению фашизма и коммунизма. Другая и довольно большая группа респондентов назвала минувший век эпохой атома. С этими последними трудно не согласиться: ведь если для информационной или социальной революции еще можно найти аналоги в истории, то покорение атома — это совершенно новая область разумной деятельности, до сей поры практически неизведанная.
Однако есть еще одно, что делает двадцатый век двадцатым веком, и более четверти опрашиваемых говорили об этом.
Космонавтика.
За этим емким словом скрывается целое множество специальных понятий и терминов, в мгновение ока ставших общеупотребительными: «космическая скорость» и «орбита», «ракета-носитель» и «искусственный спутник Земли», «космонавт» и «астронавт». А уж влияние, которое оказала космонавтика на общественное сознание, трудно переоценить. И очень отрадно видеть, что многие еще помнят об этом, невзирая на уговоры тех, кто считает, будто бы звезды совсем не нужны людям, а смысл нашего существования сводится к ежечасной дарвиновской «борьбе за выживание» на нашей планете.
Любой вид человеческой деятельности имеет свою историю. И это не всегда известная история. Космонавтике повезло: на протяжении пятидесяти лет она вызывала столь пристальное внимание публики, что мало осталось «темных пятен», которые еще не освещены публицистами всех мастей. Об истории космонавтики написаны тысячи книг и монографий, сняты сотни фильмов, изданы мемуары. Казалось бы, что еще можно добавить к этим трудам, многие из которых являются непревзойденными образчиками популяризаторской работы? Тем не менее существует довольно обширная область истории космонавтики, к которой мало обращаются авторы. Это — история несостоявшихся проектов, хроника упущенных возможностей и разбитых надежд. Речь здесь идет не только о трагедиях и катастрофах. Мечта всегда опережает реальность и очень часто остается лишь мечтой.
В качестве примера такого рода истории можно назвать историю советской лунной программы. О ней не любят вспоминать сегодня, ведь главная цель не была достигнута. Но при ближайшем рассмотрении обнаруживается, что если бы не было той программы, то не было бы и триумфального полета Гагарина, не было бы луноходов и орбитальных станций. Да и сама программа вызывает несомненный интерес как плод интеллектуальных усилий сотен умнейших людей своего времени. Об этом нужно рассказывать, потому что подобный разговор дает нам уникальную возможность взглянуть на историю космонавтики под другим, измененным, углом зрения, что придаст ей более законченный и объективный вид.
Этому разговору и посвящена книга, которую вы держите в руках.
Разумеется, перед вами компиляция. Я не задавался целью сделать какое-то оглушительное открытие или, наоборот, за надуманной сенсационностью скрыть вторичность материала. Я просто попытался собрать под одной обложкой все малоизвестные факты из истории космонавтики, особое внимание уделив забытым идеям и проектам. При этом я понимаю, что нельзя объять необъятное, и, скорее всего, мою книгу можно дописывать до бесконечности. Но будем считать, что первый шаг в нужном направлении сделан. Насколько мне это удалось, судить только вам.
С уважением, Антон Первушин
БИТВА, КОТОРОЙ НЕ БЫЛО
Памяти всех тех, кто отдал жизнь за Мечту о небе и звездах, — посвящается.
7 ноября 1957 года информационные агентства всего мира облетело сообщение: русские наконец-то запустили на орбиту свой первый сателлит, Советский Союз стал космической державой.
8 этом сообщении не было ничего сенсационного. После того как 1 сентября 1956 года американцы отправили в космос 10-килограммовый сателлит «Орбитер», мировая общественность ожидала «ответного хода» со стороны Советов, которые, насколько было известно, разрабатывали свою собственную космическую программу. Однако в высших военных и политических кругах Запада эта новость вызвала настоящий фурор.
Во-первых, искусственный спутник Земли (они называют его «Sputnik»!), выведенный советскими учеными на орбиту, ничем не напоминал глупый шарик «Орбитер», все оборудование которого состояло из ртутной батареи и радиопередатчика, — нет, это был настоящий орбитальный самолет, крылатый красавец весом в полторы тонны, напичканный хитроумными приборами с радиоуправлением. Во-вторых, на его борту находился «биологический груз»: собака Лайка, две черепахи и десяток мышей; система жизнеобеспечения проработала более пяти суток (половина времени существования спутника на орбите), и все это время животные чувствовали себя нормально. В-третьих, советские газеты вполне определенно писали: это лишь первый шаг, в следующий раз в космос поднимется человек.
Уже через неделю после запуска в Москве состоялась торжественная церемония награждения главных конструкторов, работавших над созданием «Спутника-1» и ракеты-носителя к нему, получившей название «Победа». На церемонии присутствовали не только руководители СССР, но и приглашенные иностранные журналисты, которые получили уникальную возможность задать несколько вопросов отцам советской космонавтики. На вопросы корреспондентов ученые отвечали охотно, не скрывая своих дальнейших планов. Сергей Королев, генеральный конструктор орбитального самолета «Спутник-1», в частности, заявил, что полет человека состоится только после того, как у него лично и у его товарищей не останется сомнений в том, что такой полет закончится благополучно для смельчака-пилота. Михаил Тихонравов, конструктор ракеты-носителя «Победа», заинтриговал всех загадочной фразой о том, что советские инженеры еще не раз удивят мир и что советская космонавтика пойдет своим путем, в котором тяжелые баллистические ракеты — не самое главное. Валентин Глушко, конструктор двигателей к ракете-носителю, был чуть более откровенен, сообщив журналистам, что уже сформирован отряд космонавтов, готовых лететь на Луну, Венеру и Марс.
В Советском Союзе запуск «Спутника-1» вызвал всеобщее ликование и небывалый энтузиазм. Конструкторы орбитального самолета и ракеты-носителя к нему в один день стали национальными героями. О них писали газеты и рассказывали по радио, сочинители всех мастей, закатав рукава, засели за романы и поэмы, воспевающие нелегкий труд ракетчиков, а издательство «Советская энциклопедия» в срочном порядке готовило роскошный альбом, посвященный «Спутнику» и его создателям.
В Вашингтоне, наоборот, царил переполох. Президент Эйзенхауэр встретился с министром обороны Нейлом Макэлроем с целью выяснить, какие еще сюрпризы могут преподнести русские и существуют ли в США проекты, которые позволят в кратчайшие сроки преодолеть наметившееся «отставание». Эта историческая беседа, продолжавшаяся шесть часов, предопределила развитие космической программы США на десятилетие вперед. И уже тогда американским президентом были приняты два принципиально важных (и, как показало время, ошибочных) решения. Министр обороны сумел убедить Эйзенхауэра в том, что гонка за приоритетами в космической области имеет исключительно идеологическое значение и на этом фронте русские уже потерпели поражение, упустив шанс стать «первой космической державой». Любые их достижения теперь станут лишь поводом вспомнить о том, кто на самом деле является хозяином космического пространства, заявив на него «право владения» запуском сателлита. Поэтому Макэлрой посоветовал не делать резких движений и расходовать средства попусту — тем более что главной задачей на текущий момент является расширение спутниковой группировки и наращивание ракетно-ядерного потенциала. Что касается «новых сюрпризов», то по данным разведки разработка ракеты «Победа» и орбитального самолета «Спутник-1» проходила в мобилизационном режиме, снова воспроизвести этот успех русские смогут нескоро, а если попытаются, то серьезно проиграют в сфере создания и принятия на вооружение баллистических межконтинентальных ракет.
Таким образом Макэлрой успокоил президента, и когда через неделю после исторической встречи Эйзенхауэр выступал с докладом на совместном заседании обеих палат Конгресса, об отставании в космических технологиях не было сказано ни слова. Президент заверил собрание, что нет никаких причин для беспокойства, Америка остается ведущей державой, развитие космической программы идет своим ходом, а в ответ на «дешевые популистские заявления» русских ученых американские инженеры собираются в ближайшее время осуществить запуск «обитаемого сателлита» с пилотом на борту. Это была первая ошибка.
Много лет спустя сенатор Линдон Джонсон (позже — Председатель Совета по космосу, еще позже — президент США), присутствовавший на заседании, с горечью скажет: «Мы поверили словам Эйзенхауэра. Этим словам нельзя было не поверить. Триумф «Орбитера» затмил нам разум. Мы считали себя первыми, хотя не стали еще вторыми».
В качестве ответа на «дешевые заявления» рассматривалось сразу несколько проектов. Один выдвинул «ракетный барон» Вернер фон Браун, технологии которого уже доказали свою эффективность в ходе запусков целой серии легких сателлитов, другой отстаивали ВМС, третий — ВВС. Каждый из этих проектов был по-своему хорош, но поскольку администрация всерьез не собиралась добиваться конкретных результатов в короткий срок, окончательного выбора сделано не было, а более чем скромные средства, отпущенные на решение задачи, разделили на три части, чтобы никого не обидеть. Это была вторая ошибка.
Самым амбициозным из предложенных был проект, получивший название «Дайна-Сор». В рамках этого проекта военно-воздушные силы планировали создать орбитальный самолет (космоплан), нацеленный на решение целого ряда задач: от разведывательных до бомбардировочных. Сама концепция сверхскоростного и сверхвысотного самолета с ракетным двигателем заслуживала пристального внимания хотя бы потому, что русские ученые избрали именно ее для реализации программы по запуску «Спутника-1», а удачным запуском подтвердили перспективность этой схемы.
Командование ВВС было настолько увлечено проектом «Дайна-Сор», что выделило дополнительное финансирование на его реализацию, во всеуслышание пообещав запустить первого человека в суборбитальный полет уже к началу 1963 года
Тем временем разведка докладывала, что русские активизировали работы на стартовом комплексе полигона Владимировка, расположенном на севере Каспийского моря. А в январе 1958 года состоялся запуск межконтинентальной ракеты нового типа, получившей название «Буря». Вопреки своему обыкновению ТАСС довольно подробно рассказало о «Буре» и ее создателях. Возглавлял разработку авиационный конструктор Семен Лавочкин, а само «изделие» представляло собой маневрирующую крылатую ракету с дальностью полета в 8000 километров и грузоподъемностью в 2,5 тонны. Во время испытаний «Буря» долетела до контрольной точки, находившейся на Камчатском полуострове.
В интервью корреспонденту газеты «Правда» Лавочкин рассказал, что это далеко не первый запуск крылатой ракеты, однако только теперь удалось получить столь впечатляющие результаты. При этом конструктор подчеркнул, что испытания «Бури» непосредственно связаны с космической программой и к решению военных задач имеют лишь косвенное отношение.
«Наша ракета, — говорил Семен Лавочкин, — должна стать следующей после «Победы». Ее высокая маневренность позволяет отказаться от жесткой географической привязки космодромов. С нее мы можем производить старт самолета-спутника в любом удобном для нас месте, а не только с Байконура».
Из того же выпуска «Правды» любой заинтересованный читатель мог узнать, что в скором времени ожидаются испытания пилотируемого варианта крылатой ракеты-носителя «Буран», разрабатываемого под руководством Владимира Мясищева. Эта ракета сможет не только доставлять самолет-спутник в выбранную точку старта, но и под управлением опытного пилота возвращаться к «космодрому приписки», совершая мягкую посадку. По утверждению газеты, ракета-носитель «Буран» будет использоваться «многократно», что позволит ей до истечения срока эксплуатации вывести на околоземную орбиту не менее ста спутников!
Непривычная откровенность главного советского органа печати смущала аналитиков ЦРУ. В этом чувствовался какой-то подвох, поэтому эксперты пришли к выводу, что советская сторона блефует, выдавая желаемое за действительное.
Однако американские эксперты недооценили противника. Эти «откровения» были предназначены не им — с помощью подобных публикаций коммунистическое руководство предполагало закрепить в сознании народных масс СССР необратимость изменения приоритетов в военной отрасли. Уязвленное запуском «Орбитера» самолюбие советских вождей и жажда реванша побудили их пойти на структурные реформы армии и военной промышленности. Доля сухопутных и военно-морских сил сокращалась день ото дня, «любимой игрушкой» стали тяжелые ракеты, высотная и космическая авиация. В конечном итоге перестройка выразилась в том, что были учреждены сразу две новые структуры — Министерство авиации и космонавтики, которое возглавил Сергей Королев, и Военно-космические силы, которые возглавил маршал Дмитрий Устинов. Министерству Сергея Королева были переподчинены почти все КБ и заводы, работавшие над авиационной и ракетной тематикой. Военно-космические силы вобрали в себя ВВС и сравнительно молодые ракетные войска.
Об учреждении этих ведомств ТАСС официально объявило 3 мая 1959 года — через два дня после того, как в космосе побывал первый человек Земли. Им стал летчик-испытатель майор Владимир Ильюшин. Модифицированный вариант ракеты «Победа», получивший название «Восход», вывел на низкую эллиптическую орбиту самолет-спутник «Красная Звезда» весом в 5 тонн. Пока это был еще не полнофункциональный орбитальный космоплан, а лишь его прототип. Для первого запуска модель облегчили до предела, от маневрирования в безвоздушном пространстве пришлось отказаться, да и от посадки «по-самолетному» тоже — на высоте 10 километров от Земли гермокабина с пилотом отделялась от планирующего аппарата. Большинство операций по управлению самолетом-спутником осуществлялось вручную.
Полет превзошел ожидания. Ильюшин совершил три витка вокруг Земли, при этом поддерживая связь с наземными центрами контроля, затем запустил тормозной двигатель и вошел в плотные слои атмосферы. К сожалению, точность систем наведения оставляла желать лучшего, и «Красная Звезда» промахнулась мимо аэродрома посадки на добрую тысячу километров. Кроме того, при отделении гермокабины произошел сбой, и летчику удалось катапультироваться чуть ли не у самой поверхности, в результате чего он получил незначительные травмы. Впрочем, досадные просчеты не могли омрачить всеобщего торжества. А загипсованная рука на перевязи, с которой Ильюшин впервые появился на публике, только придала его образу дополнительный оттенок героизма и самопожертвования.
Правительства мира наперебой спешили поздравить советское руководство с очередным достижением, газеты и журналы выходили с аршинными заголовками, стремясь перещеголять друг друга в хвалебных эпитетах. Только Америка хранила многозначительное молчание.
Оно было прервано 25 мая, когда президент Эйзенхауэр выступил на пресс-конференции в Белом доме с поздравлениями в адрес русских ученых. Помимо этого, президент заверил американских граждан, что в их стране предпринимаются самые активные меры по реализации программы запуска человека в космическое пространство; в частности, впервые было признано существование проекта «Дайна-Сор».
Выступление президента было полуправдой. «Активные меры» свелись на деле к одному: на основе данных о полете ракетно-космической системы «Восход — Красная Звезда» американские эксперты предложили объединить проект ВВС «Дайна-Сор» с разработками Вернера фон Брауна по созданию тяжелых межконтинентальных ракет, чтобы получить на выходе воздушно-космический аппарат, аналогичный советскому. При этом, заметим, на новую программу даже не было выделено дополнительного финансирования, что на некоторое время вообще блокировало какие-либо работы, пока участники договаривались о бюджете и разграничении полномочий.
Когда Вернер фон Браун добился аудиенции у президента, чтобы попытаться внести ясность в вопрос о приоритете новой программы, то получил уклончивый ответ: «Мне хотелось бы узнать, что происходит на обратной стороне Луны, но я не могу выделить на это средства в текущем году».
Вторая половина 1959 года была насыщена событиями. Однако Америка к ним не имела ни малейшего отношения. Первый космонавт планеты Владимир Ильюшин посетил с визитами почти все страны мира, вызвав самую настоящую сенсацию. Свою долю почестей получили и разработчики советской космической программы: ордена и звания, публичные чествования сыпались на них, как из рога изобилия. Апофеозом стало официальное объявление 3 мая Днем Космонавтики — к списку выходных и праздников добавился еще один день.
Осенью советская пресса сообщила миру об успешных беспилотных запусках самолетов-спутников с крылатых ракет-носителей «Буря-М» и «Буран». Кроме того, советские конструкторы подготовили еще один сюрприз: Глеб Лозино-Лозинский и Павел Сухой создали систему, позволяющую запускать спутники с тяжелого сверхзвукового самолета-носителя. Возможное поле стартов еще более расширилось, и новые полеты летчиков-испытателей на суборбитальные и орбитальные высоты не заставили себя ждать.
В течение года — с мая 1959 года по май 1960 года — было произведено еще шесть пилотируемых запусков с использованием ракеты «Восток». Новые полеты космонавтов были нацелены на решение ряда практических задач, связанных с апробацией новой техники и отработкой методик космического пилотирования. С каждым запуском вес самолетов-спутников увеличивался. Росла и их оснащенность. Западные эксперты могли только догадываться, что подразумевается под «блоком научного оборудования», как именовали советские комментаторы полезные грузы, выводимые на орбиту при помощи самолетов-спутников. Это могло быть все что угодно — от разведывательных сателлитов до атомных бомб.
В тот памятный год, предопределивший будущее мира, не обошлось без трагедий. Из шести космонавтов на Землю не вернулись двое: Алексей Дедовский и Сергей Шиборин. Дедовский погиб при входе в атмосферу: угол входа оказался слишком отвесным, и пилот не смог вывести аппарат из пике. Шиборин погиб из-за неисправности в тормозном двигателе. При попытке осуществить орбитальное маневрирование двигатель вдруг вышел на полную тягу, в несколько секунд исчерпав весь запас топлива и выбросив самолет-спутник на более высокую орбиту. В то время еще не существовало системы спасения экипажей терпящих бедствие космический кораблей, и через трое суток, после отказа системы жизнеобеспечения, пилот умер. Все это время он держался героем и до самого конца сообщал на Землю о своих ощущениях.
Гибель двух летчиков-испытателей вместе с сочувствием вызвала бурю негодования в западноевропейской прессе, которая с огромным вниманием следила за советской космической программой. Утверждалось, в частности, что Советы используют космонавтов как смертников, что у пилотов нет права выбора и их чуть ли не приковывают цепями к пульту управления.
В ответ на эти обвинения советские средства массовой информации стали устраивать публичные пресс-конференции с членами Отряда космонавтов, готовящихся к полетам, на которых сами летчики терпеливо объясняли зарубежным журналистам, что риск и высокая смертность — это часть профессии настоящего испытателя; что они идут на это осознанно, по воле сердца и выбранной профессии.
Западным СМИ пришлось замолчать. А именами погибших космонавтов были названы два города на Урале.
Летом 1960 года произошло еще одно очень важное событие. Вернеру фон Брауну и его коллегам по проекту «Дайна-Сор» удалось запустить на низкую орбиту полноразмерный макет орбитального самолета массой в 3 тонны. В качестве носителя использовалась новая баллистическая ракета «Сатурн», продемонстрировавшая хорошие показатели. Однако даже ее грузоподъемности было явно недостаточно для полета человека.
Впрочем, это был неплохой предвыборный ход, и республиканцам удалось удержаться у руля власти: на выборах 1960 года победил Ричард Никсон, который заявил, что является прямым преемником Эйзенхауэра. Утверждения конкурента от демократов Джона Кеннеди, будто бы Америка отстает от СССР в области космических исследований, что вредит ее репутации на мировой арене, не было воспринято избирателями всерьез, а кое-кто усмотрел в словах кандидата настоящее оскорбление: Кеннеди даже заставили публично извиниться перед нацией.
В начале 1961 года, сразу после январских праздников, советское руководство выступило с официальным заявлением, в котором мировой общественности сообщалось, что СССР отказывается от доктрины военного противостояния странам Запада; Советский Союз является «миролюбивым государством», которое не хочет участвовать в изматывающей «гонке вооружений». По этой причине Красная Армия произведет значительное сокращение имеющихся арсеналов в части тяжелой бронетехники, военного флота и ракетно-ядерных вооружений. Для того чтобы у потенциальных агрессоров не возникло в этой связи соблазна напасть на Советский Союз, создается армия нового типа, основой вооружения которой являются тактические аэрокосмические соединения, способные оперативно доставить боезаряд в любую точку земного шара. Б качестве сил стратегического сдерживания будут использоваться автономные аппараты с атомными боеголовками, размещенные на высоких орбитах. Советские лидеры также предостерегли тех, кто попытается уничтожить эти «аппараты». Возмездие будет быстрым и неминуемым, подчеркнули они.
Для «демонстрации мощи» в феврале того же года состоялись «секретные» учения, когда одновременно с разных стартовых позиций были запущены пятнадцать (!) орбитальных самолетов-спутников. В течении суток над головами притихшего человечества эта космическая «армада» выполняла маневры — поодиночке и группами, — среди которых были, например, маневры снижения и прицельного сброса вымпела над Нью-Йорком.
Может быть, человечество никогда ничего не узнало бы об этих учениях, если бы советское руководство предусмотрительно не позаботилось о разглашении своих секретов. На Запад сбежал полковник разведки Пеньковский. В качестве платы за «политическое убежище» он прихватил с собой отчет о результатах учений, снабженный массой дополнительных материалов, включая кинопленки. Одна из копий документов каким-то образом попала в руки французских журналистов, поспешивших огласить сенсационную информацию.
Пеньковский был судим на родине и заочно приговорен к смертной казни. Однако цели своей он достиг — буря во всем мире поднялась нешуточная. Что любопытно, оценки по поводу разделились самым кардинальным образом. Одни комментаторы выражали страх перед новой угрозой и требовали принятия международных законов, запрещающих использование космического пространства. Другие, наоборот, приветствовали инициативу СССР по одностороннему сокращению вооруженных сил и восхищались достигнутым технологическим прорывом.
В США преобладали панические настроения. Вспомнились и пророческие слова кандидата в президенты Джона Кеннеди, и пустые обещания республиканской администрации. Ричард Никсон вызвал к себе руководителей проекта «Дайна-Сор» и устроил самый настоящий разнос. В результате программа была форсирована, что тут же привело к катастрофе: первый полнофункциональный самолет-спутник Америки с шимпанзе Хэм на борту взорвался вместе с ракетой-носителем над стартовым комплексом мыса Канаверал.
Американские СМИ попытались «подсластить пилюлю», объявив Пеньковского «засланным агентом-провокатором». Однако и им вскоре пришлось пересмотреть свою точку зрения на реальные возможности военно-космических сил СССР.
В апреле 1961 года разразился Кубинский кризис. Полторы тысячи «контрас» при поддержке морской пехоты США и новейшего авианосца «Энтерпрайз» высадились на побережье Кубы в Заливе Свиней. Еще в сентябре прошлого года советские лидеры высказались однозначно: любая попытка вооруженных сил США вторгнуться на территорию суверенной Кубы встретит решительный отпор. Однако Никсон не внял предупреждению. Возможно, он хотел испытать советское руководство на прочность. И испытал.
В тот самый момент, когда «контрас» и морские пехотинцы вступили в бой с частями народной армии Фиделя Кастро, авианосец «Энтерпрайз» подвергся атаке с воздуха. Полутонная крылатая ракета прилетела из зенита и взорвалась на полетной палубе, серьезно повредив ее и уничтожив часть самолетов авиакрыла «Энтерпрайза». Боевые действия были в тот же день прекращены, а войска отозваны. Советы продемонстрировали волю к победе, а вторжение на Кубу само по себе мир воспринял неоднозначно, и Никсон не рискнул усугубить конфликт.
Немалую роль в принятии этого решения сыграло то, что военные не сумели засечь место старта и траекторию самолета-спутника, прицельно выпустившего ракету. Советский космический аппарат был замечен только после того, как начал снижение над Атлантикой, уходя к своим базам. Американским военным пришлось прямо на ходу пересматривать планы, созданные на случай войны с СССР, и тут выяснилось, что все эти разработки в пору выбрасывать в мусорную корзину. Даже если внезапным ядерным ударом удастся вывести из строя стартовые площадки межконтинентальных баллистических ракет типа «Победа» и «Восход», останутся еще комплексы «Буря» и «Буран», местоположение которых было тайной за семью печатями, и эскадрильи загадочных сверхтяжелых самолетов «Су-100», с которых также могли стартовать орбитальные аппараты, несущие разрушение и смерть. Кроме того, в космосе болтались десятки спутников, многие из которых могли нести на себе «научное оборудование» в виде атомных боеголовок, нацеленных на крупнейшие города Америки.
Итак, Соединенные Штаты в одночасье оказались безоружными перед лицом технологий будущего, которыми овладел потенциальный противник. Требовалось принять соответствующие меры. И не только в военной области.
25 мая 1961 года президент Никсон обратился к Конгрессу с посланием, озаглавленным «О неотложных национальных потребностях».
«Если нам предстоит выиграть битву, — говорил президент, — которая развернулась в мире между свободой и тиранией, драматические достижения в космосе, имевшие место в последние месяцы, должны создать у всех нас ясное представление, что эта деятельность оказывает воздействие повсюду на планете на умы людей, задумывающихся над тем, какую дорогу им следует выбрать. Настало время, когда наша страна должна играть явно лидирующую роль в космических достижениях, что во многом может оказаться ключом к нашему будущему на Земле…»
В качестве мер, направленных на завоевание «лидирующей роли», Никсон предложил следующие шаги: в кратчайшие сроки создать аэрокосмические силы, сопоставимые по мощи и классу решаемых задач советским; усилить спутниковую группировку США разведывательными сателлитами так, чтобы контролировать всю поверхность планеты; высадить американский десант на Луне и построить там постоянно действующую базу.
В то же самое время по международным каналам был сделан заход с другой стороны. Генеральная Ассамблея ООН приняла резолюцию, призывающую все нации воздержаться от выведения на орбиты вокруг Земли или размещения в космосе ядерных вооружений или любых других видов оружия массового уничтожения. Кроме того, в Брюсселе состоялась конференция по подготовке «Большого договора о принципах деятельности государств по исследованию и использованию космического пространства». Советская делегация поначалу довольно активно включилась в работу конференции, но когда выяснилось, что США претендуют на право единоличного владения околоземным пространством, поскольку они первыми запустили сателлит, делегация демонстративно покинула конференцию.
На следующий день советский лидер раздраженно заметил в интервью, что коммунисты считают космос принадлежащим всему человечеству, потому не будут его делить в соответствии с какими-то невнятными договорами. Однако если США сочли возможным заявлять свои права на околоземное пространство, СССР оставляет за собой право на присоединение к территориям Советского Союза любого небесного тела, на котором будет установлен красный флаг. Первым таким телом станет Луна.
Именно отсюда следует вести отсчет знаменитой Войны за Луну, разгоревшейся в конце 60-х. И хотя отдельные авторы (в том числе советский писатель польского происхождения Станислав Лем, прославившийся трехтомным документально-исторический трудом на эту тему, озаглавленным двусмысленно: «Мир за Земле») относят точку отсчета к Кубинскому кризису, нельзя отрицать тот очевидный факт, что новая цель для космических программ двух противоборствующих держав была объявлена на высшем уровне только в конце мая 1961 года.
Первые выстрелы новой войны прозвучали (согласно тому же Лему) только через пять лет — в июле 1966 года. К тому времени американцам удалось значительно продвинуться вперед в деле освоения космического пространства. Два первых пункта плана Никсона успешно реализовывались. На различных орбитах барражировали эскадрильи пилотируемых самолетов-спутников класса «Дайна-Сор» и «Сайнт», помимо текущего обслуживания сотен сателлитов связи и разведки, эти аппараты занимались сопровождением советских пилотируемых машин и наблюдением за долгоживущими орбитальными станциями. Сборные станции серии «Союз» появились на орбите в 1964 году и служили в качестве причальных доков для самолетов-спутников. На станциях дежурили сменные экипажи и, как небезосновательно полагали западные эксперты, могло размещаться атомное оружие. Понятно, что активное маневрирование в опасной близости от вражеских объектов раньше или позже должно было привести к столкновению. Однако война началась по другой причине.
б июля 1966 года с мыса Канаверал стартовал тяжелый грузовой космоплан «Джемини-2». На орбите к нему присоединились два космоплана сопровождения, запущенные на сутки раньше. Все три аппарата направились в заранее выбранный район — к погибшей «Красной звезде-5», в которой покоилось тело героя космоса Сергея Шиборина. Советские пилоты уже имели возможность снять с орбиты этот самолет-спутник, однако было решено сохранить его как памятник всем погибшим в космосе. Американцев не смутил запрет на приближение к памятнику — их очень интересовали и сам самолет-спутник, и шифровальные устройства, находящиеся на нем, и тело испытателя, покоившегося на орбите вот уже семь лет.
Операция не должна была привлечь чьего-либо внимания, поскольку предполагалось, что она займет не более суток. Однако те, кто готовил операцию, просчитались. В тот момент, когда американские космопланы вошли в «запретную зону» и попытались сблизиться с «Красной звездой-5», их без предупреждения атаковала эскадрилья советских самолетов-спутников. Впервые в истории космонавтики были применены безоткатные пушки Нудельмана, созданные специально для стрельбы в вакууме. Грузовой космоплан «Джемини-2», представлявший собой самую большую цель, был уничтожен; экипаж из двух астронавтов погиб. Два кос-космопланасопровождения попытались вступить в бой, используя микроперехватчики «МХИВ». Однако низкая эффективность этого вида вооружений, не рассчитанного на борьбу с активно маневрирующей целью, и численный перевес сил противника заставили американцев отступить.
Так началась война за контроль над околоземным пространством, которая естественным образом переросла в Войну за Луну. Это была очень странная война. В силу того, что статус околоземного космического пространства оставался неопределенным, а международные договоры, регламентирующие деятельность государств в этой сфере, оказались заблокированы на стадии подготовки, каждая из сторон, участвующих в конфликте, старалась оправдать свои действия, обвиняя противника в провокационном поведении, ведущем к нарушению безопасности полетов. При этом схватки в космосе приобретали все более ожесточенный характер. Так, уже в ноябре 1966 года американские боевые космопланы предприняли атаку на станцию «Союз-3», откуда осуществлялся контроль за низкими экваториальными орбитами. Станцию удалось разрушить, но ценой огромных потерь — в тот день американские военно-космические силы потеряли двенадцать машин с пилотами против пяти советских.
Еще это была очень дорогая война. Каждый запуск кос-космопланана орбиту обходился в кругленькую сумму, а удешевить их, создав системы многократного использования, подобные «Бурану» и «Су-100», американским конструкторам пока не удалось. Рассматривались различные варианты использования в качестве носителей сверхзвуковых бомбардировщиков «Б-70 Валькирия» или «А-12 Черный дрозд», но до практической реализации этих проектов было еще далеко: сказывалось общее отставание США в области гиперзвуковых технологий.
Перенести поле боя на Землю США так и не решились. Это сняло бы часть проблем, но только не главную — уничтожение многочисленных стартовых комплексов противника, благодаря которым Советский Союз контролировал все воздушно-космическое пространство Земли.
После «горячего» этапа наступило затишье. Противники «зализывали раны» и разрабатывали новые тактические приемы. Война в космосе поменяла характер — теперь она стала тайной, партизанской. В моду вошли миниатюрные маневрирующие аппараты-«камикадзе» типа «Тор», выслеживающие объекты противника. Одной из целей для этих аппаратов стали космические «танкеры» — массивные блоки с горючим и окислителем, в большом количестве выводимые Советами на геоцентрические орбиты. Эти танкеры не только позволяли продлить существование орбитальных самолетов в космосе, но и служили опорными базами для продвижения к Луне. Русские сами «подставились», сообщив средствам массовой информации свои планы по покорению Луны. Согласно их программе, экспедиция на Луну должна была выглядеть как поэтапное продвижение так называемого «тяжелого межпланетного корабля» от танкера к танкеру с выходом на селеноцентрическую орбиту; там этот корабль превратится в долгоживущую станцию, с которой будут стартовать малые «лунные корабли». Такая схема, по мнению советских ученых, должна была обеспечить возможность строительства базы на лунной поверхности — в ее видимом центре. Понятно, что беспилотные танкеры стали лакомым куском для космических охотников.
Один космоплан «Дайна-Сор» был способен вывести на заданные орбиты до десяти перехватчиков «Тор», и очень скоро русские лишились большинства своих танкеров и огромного количества спутников связи и разведки. На официальном уровне причастность США к уничтожению космических объектов отрицалась, а их гибель объяснялась «естественными» причинами: мол, после ряда прискорбных инцидентов 1966 года на околоземных орбитах появилось множество обломков, которые представляют реальную опасность для любых аппаратов вне зависимости от их национальной принадлежности.
В этот период наметилось определенное отставание СССР. Дело в том, что в Советском Союзе по-прежнему отдавали предпочтение пилотируемой космонавтике, а технологии создания полностью автономных систем управления оставляли желать лучшего.
Однако и эту проблему удалось решить после того, как русские конструкторы научились окружать свои космические объекты сворой «ложных целей», что позволило резко снизить эффективность перехватчиков «Тор».
Тогда в недрах Пентагона созрел проект «Стальное небо»: горячие головы предложили навсегда «закрыть» околоземное пространство, выбросив в космос сотни тонн металлического мусора. Однако план не был реализован. Благодаря усилиям советской разведки он стал достоянием гласности и вызвал всеобщее возмущение. Сильное впечатление на обывателей произвел и демонстративный запуск крылатой ракеты «Буря-МН», которая стартовала с территории недавно образованной Еврейской Крымской Социалистической Республики, следуя по рельефу местности на предельно малой высоте, прошла над Южным полюсом и взорвалась над Мексикой.
К выборам 1968 года Америка пришла выдохшейся. Администрация Никсона исчерпала ресурс доверия избирателей. Отсутствие впечатляющих результатов в космосе, военное фиаско во Вьетнаме и в Северной Корее нанесли сокрушительный удар по американскому самолюбию. Последнюю точку в истории правления республиканцев поставил снайперский выстрел, оборвавший 1 мая 1968 года жизнь наиболее вероятного кандидата в президенты Джона Кеннеди, выступавшего в тот день на митинге перед рабочими Далласа. Снайпер был убит при попытке его захвата, однако Сенатской комиссии по расследованию удалось установить его личность — он оказался бывшим сотрудником ЦРУ и республиканцем по убеждениям.
Первая растерянность демократов, вызванная смертью Кеннеди, тут же сменилась яростной атакой на конкурентов по политической борьбе. В результате новым президентом стал Линдон Джонсон, завоевавший себе репутацию человека, разбирающегося в «космических делах».
Джонсон придерживался более умеренной политики, чем его покойный друг Кеннеди. В отличие от последнего он не предлагал прекратить «изнурительную гонку за превосходство» и отменить экономические санкции, наложенные на Советский Союз, что позволило бы укрепить «дружеские отношения с этой могучей державой». Но зато подписал несколько важных паритетных договоров по сокращению ядерного потенциала, разрешил коммунистическую партию и создал НАСА — первое гражданское Управление по космонавтике, главной задачей которого была определена подготовка научной экспедиции на Луну.
Однако было уже поздно. 20 июля 1969 года в 23 часа 17 минут по московскому времени лунный экспедиционный корабль «Циолковский» успешно сел на Луну. На его борту находились пилоты Юрий Гагарин и Алексей Леонов.
Они пробыли на Луне трое суток. За это время космонавты установили там красный флаг, в открытом эфире объявили об учреждении суверенной Лунной республики и попросили принять ее в состав СССР. Их просьба была тут же удовлетворена.
Высадка советских космонавтов на Луну по международному резонансу затмила даже подвиг Ильюшина. Этого ждали, к этому готовились, но поверить, что земной человек оставил свой след на поверхности другого мира, оказалось не так-то просто. Гагарин и Леонов стали героями столетия, и очень многие люди по всему миру преклонялись перед ними и перед страной, которая сумела сделать фантастику реальностью.
Между тем на Луне началось строительство постоянной базы. Высадки людей на ее поверхность стали обычным рутинным делом, и там побывали не только граждане СССР, но и представители дружественных стран — Польши, Болгарии, ГДР, Чехословакии, Югославии, Франции, Индии. Предложение было сделано и США, но президент Джонсон публично от него отказался.
Однако удержать в узде народную инициативу не смог даже президент. Молодой американский коммунист Деннис Тито объявил о своем желании слетать на Луну в составе советской экспедиции. Понятно, что его намерение встретило серьезное сопротивление. Долгое время Госдепартамент отказывал ему в праве выезда из страны, мотивируя это тем, что некоторое время Тито работал на НАСА, а значит, знал много секретов. Тогда инициативному американцу пришлось нарушить закон. В багажнике автомобиля контрабандистов он пересек мексиканскую границу и прямым рейсом «Ту-144» из Мехико вылетел в Москву.
Там его приняли очень тепло и отправили в Центр подготовки космонавтов имени Цандера. Пройдя полный курс, Деннис Тито отправился на Луну. Ему очень понравилось на базе «Селена-1», и он даже пожелал остаться на вторую смену. Просьбу американца удовлетворили, и Тито пробыл на Луне в общей сложности четыре месяца, проявив при этом недюжинное кулинарное искусство в условиях пониженной тяжести.
По возвращении на Землю он не стал менять гражданство и в феврале 1970 года вернулся в США. Его полет на Луну стал сенсацией номер один. Популярность Денниса Тито в Америке была сравнима только с популярностью Элвиса Пресли. Кстати, Пресли, добившийся личной встречи с первым «лунатиком» Соединенных Штатов, посвятил этому событию песню «Любовь космонавта».
Весной 1970 года советский лидер заявил, что ракетно-ядерные системы Советского Союза переводятся на Луну. Это позволит избавить Землю от угрозы радиоактивного заражения, связанной с хранением этих видов вооружений и возможностью их несанкционированного использования. С другой стороны, размещение ядерных ракет на Луне дает гарантию безопасности в связи с тем, что исчезает опасность «внезапного нападения», целью которого, как известно, является уничтожение ракетно-ядерного потенциала противника.
Провал лунной программы НАСА привел к возобновлению старого проекта ВВС «Лунэкс». В силу напряженной обстановки на околоземной орбите этот проект предполагал «прямую» схему полета на Луну, когда корабль с экипажем отправлялся к нашему естественному спутнику, стартуя прямо с Земли. Теперь «Лунэкс» обрел новое значение: в Пентагоне задумали высадить на Луну десант и штурмом взять советскую базу. Это был шаг отчаяния, и президенту Джонсону очень не хотелось давать свое согласие на его реализацию. Однако под давлением генералитета он принял его.
В 1971 году, после смерти Мао Цзэдуна (по мнению некоторых авторов, насильственной), новое руководство Китайской Республики выразило свою готовность расширить и укрепить контакты с СССР, а в перспективе — заключить договор о стратегическом партнерстве. Подобный союз грозил Америке крупными неприятностями, и Джонсон отдал приказ о начале операции «Высокий прыжок».
12 апреля 1972 года космический корабль «Аполлон» весом в 180 тонн был поднят на орбиту новейшей и мощнейшей ракетой «Нова» и отправился к Луне. К счастью для всего человечества, этот запуск и сама операция готовились в большой спешке, отдельные этапы экспедиции не были продуманы, и вместо вторжения получился пшик. «Аполлон» серьезно пострадал при посадке, экипаж выжил, но оказался заточен в герметичной кабине. В итоге их спасали и спасли русские космонавты.
Правда об операции «Высокий прыжок» всплыла наружу. Скандал получился нешуточный, и военное командование США в полном составе было отправлено в отставку. Чтобы спасти свое положение в условиях новой предвыборной кампании, Джонсон сделал несколько уступок Советскому Союзу на международной арене, добившись снятия экономических санкций.
Западный мир, сплоченный ранее мифом о «красной угрозе», трещал по швам. Крупные корпорации ФРГ и Британии, получив соблазнительные предложения, проявили желание участвовать в космической программе СССР и в развитии его народного хозяйства. Созревал и новый Договор о коллективной безопасности в Европе, а участие в нем Советского Союза уже не воспринималось дурацкой шуткой. В самой Америке тоже не все было в порядке. Индейцы сиу захватили поселок в резервации Пайн-Ридж и потребовали пересмотра соглашений, заключенных правительством США с индейцами. Случился финансовый кризис, вызванный невиданным скачком цен на нефть…
Президенту Джонсону все же удалось удержаться на второй срок. И первое, что он сделал, вернувшись на свое место в Белом доме, — обратился к нации с воззванием, в котором определил новую цель — Марс.
Президент и его советники справедливо считали, что столь мощная ракета, как «Нова», и ядерный двигатель «Нерва-2», разработанный в лабораториях НАСА, позволят уже в 1973 году отправить экспедицию к красной планете. Но и здесь решение запоздало.
19 мая 1971 года к Марсу стартовал тяжелый космический корабль «Аэлита» с героями покорения Луны Юрием Гагариным и Алексеем Леоновым на борту. Корабль представлял собой сборную конструкцию, состоящую из двух долговременных станций типа «Союз», электроракетной двигательной установки с ядерным источником электроэнергии и спускаемого космоплана. Через 230 суток корабль вышел на ареоцентрическую орбиту. Еще через неделю русские космонавты попытались совершить посадку на Марс. На этом связь с ними была утеряна навсегда.
Это не помешало советскому руководству объявить миссию выполненной, а Марс — частью территории СССР. Имена Гагарина и Леонова были увековечены в названиях астрономических объектов, земных городов и новых космических кораблей, перед которыми открывалась дорога к звездам…
На президентских выборах в Америке 1976 года победил кандидат от коммунистической партии Деннис Тито. Начиналась новая эра в истории человечества…
* * *
Вы думаете, вышеописанный сценарий развития истории — фантастика? Вы ошибаетесь. Такое вполне могло произойти и в нашей реальности. Ряд малозначительных (на первый взгляд) случайностей изменил историю космонавтики, а с ней и ход истории всего мира. Когда вы прочитаете эту книгу, то поймете, что так оно и есть.
КОСМИЧЕСКИЕ КОРАБЛИ ДОКОСМИЧЕСКОЙ ЭРЫ
Прежде чем начать разговор об альтернативных и перспективных космических проектах, необходимо разобраться, что же именно мы будем понимать под «космосом» и «космическим пространством». Дело в том, что даже сегодня вопрос о границе, после которой кончается атмосфера и начинается собственно космос, остается довольно запутанным и никто не может дать на него однозначного ответа
Например, если вы откроете энциклопедию «Космонавтика» 1985 года издания, то в статье «Космическое пространство» обнаружите совершенно невразумительное определение: «Космическое пространство — это пространство, простирающееся за пределами земной атмосферы». Сразу же возникает вопрос: а как далеко простирается земная атмосфера?
Чуть ниже авторы энциклопедии глубокомысленно сообщают, что «… в международном космическом праве нет договорной нормы, устанавливающей границу между воздушным пространством и космическим пространством». При этом утверждается: «Преобладающей является точка зрения, согласно которой такая граница должна быть установлена на высоте минимальных перигеев искусственных спутников Земли (100 км над поверхностью Земли)».
Однако существуют и другие точки зрения, отличные от «преобладающей».
Свое определение дают, например, врачи. Они ввели даже специальный термин — «пространственно-эквивалентная высота». В численном выражении она составляет около 18 километров. Причина выбора такой сравнительно малой величины, по мнению медиков, заключается в следующем Для большинства людей пребывание на высоте 3000 метров не требует никаких специальных мер предосторожности. На высоте 7600 метров человек еще может дышать при условии, что он достаточно натренирован и привык к низкому давлению. Человек, внезапно попавший в условия, соответствующие высоте 7600 метров над уровнем моря, теряет сознание через 3–4 минуты (этот отрезок времени назван «временем полезного сознания»). При увеличении высоты еще на 1500 метров «время полезного сознания» сокращается до одной минуты. На высоте 15 километров оно колеблется между 10 и 18 секундами в зависимости от предварительной тренировки и опыта. На этих высотах к опасности потери сознания добавляется еще один весьма серьезный фактор. Известно, что точка кипения любой жидкости падает по мере снижения атмосферного давления. На высоте 18 километров это давление понижается на такую величину, что жидкость, содержащаяся в теле человека (кровь, лимфа и т. д.), начинает закипать при нормальной температуре тела — 36,6 °C. Таким образом, с медицинской точки зрения, космос начинается там, где прекращается всякая жизнедеятельность.
Другого мнения о границах космического пространства придерживаются авиаторы. На высоте 18 километров еще могут летать самолеты с воздушно-реактивными двигателями. С точки зрения авиационного инженера, космическое пространство начинается либо на высоте, где перестают работать воздушно-реактивные двигатели (на 6000–9000 метров выше медицинской «пространственно-эквивалентной высоты»), либо на высоте, на которой даже при очень высоких скоростях полета крылья уже не создают достаточной подъемной силы, — эта высота равна примерно 40 километрам и очерчена верхней границей стратосферы (и нижней границей мезосферы). С другой стороны, выше 65 километров плотность воздуха столь мала, что для удержания любого летательного аппарата на заданной высоте необходимо выполнять полет со скоростью, близкой к первой космической, а значит, этот аппарат по факту можно считать «космическим объектом».
Примечательно, что для физика даже эта высота не является границей космоса. Настоящий физик только здесь и начинает интересоваться атмосферой, а границу переносит на высоту в 200 километров

Структура земной атмосферы
Разумеется, с запуском первого искусственного спутника Земли возникла острая нужда в строгом разграничении воздушного и космического пространств, так как вывод на околоземную орбиту различного рода объектов затрагивает национальные интересы множества государств, над территорией которых упомянутые объекты пролетают. Состоялась не одна международная конференция, посвященная выработке положений «международного космического права», но и по сей день при решении спорных вопросов эксперты ориентируются на «преобладающую» точку зрения. Так, согласно решению Международной авиационной федерации (ФАИ), полет принято считать космическим, если максимальная достигнутая высота превысила 100 километров над уровнем моря.
Однако мы будем придерживаться иной точки зрения. Дело в том, что большинство историков космонавтики (а настоящую книгу без преувеличения можно назвать работой по истории космонавтики) связывают определение «космический» не столько с высотой, сколько с назначением. Грубо говоря, если тот или иной аппарат проектировался и создавался для полета в космическое пространство, то вне зависимости от того, способен он был достичь хотя бы «пространственно-эквивалентной высоты» или нет, мы вправе называть его космическим, поскольку его создание является этапом, из которых и складывается собственно история космонавтики.
По этому критерию мы можем называть космическими и сохранившийся в эскизе проект «воздухоплавательного прибора» Николая Кибальчича, и первую ракету Роберта Годдарда, которая достигла невеликой высоты в 12,5 метра, и гиперзвуковые дисколеты Третьего рейха, так и не увидевшие неба. В то же самое время и при тех же условиях нельзя назвать космическими полеты и аппараты аэронавтов, или ночной бомбардировщик «Ф-117», или ракеты зенитного комплекса «С-300».
Для нас в рамках этой книги важнее всего Идея — та самая, благодаря которой XX век стал веком покорения космоса. А уж с проблемой высот и границ пусть разбираются другие.
Мы привыкли думать, что космическая эра в истории человечества началась 4 октября 1957 года — в тот день, когда на орбиту был запущен первый советский ИСЗ (искусственный спутник Земли). Однако это не совсем так. С середины XX по первую половину XX века в научной и научно-популярной печати весьма активно обсуждались проекты космических кораблей для межпланетных перелетов. Именно тогда прогремели имена Константина Эдуардовича Циолковского и Германа Гансвиндта — тех, кого «отцы» космонавтики, Сергей Королев и Вернер фон Браун, называли своими учителями.
Среди космических проектов докосмической эры встречались как совершенно фантастические, так и вполне обоснованные с научной точки зрения. Даже сегодня многие из них вызывают интерес — хотя бы как иллюстрация к тем идеям, которые волновали наших дедушек и бабушек. А начнем мы с космической артиллерии.
В 1865 году во Франции был издан очередной роман популярного прозаика Жюля Верна «С Земли на Луну прямым путем за 97 часов 20 минут». В этом романе писатель представил вниманию европейского читателя проект экспедиции на Луну в специальном снаряде, выпущенном из гигантской пушки.
Любопытно, что Жюль Берн был не одинок в своем желании поразить публику свежими идеями, которые возникали в связи с темой межпланетных путешествий. В том же году Александр Дюма опубликовал роман «Путешествие на Луну», а Анри де Парвиль выпустил книгу «Житель с планеты Марс». Помимо того появилось много книг анонимных авторов: «Поездка на Луну» — во Франции и «История путешествия на Луну» — в Англии. Нельзя сказать, что все эти авторы слепо подражали Верну. Например, Дюма ввел понятие минус-материи — «вещества, имеющего свойство быть отталкиваемым Землей», а Ахил Эро, автор безыскусной книжонки «Путешествие на Венеру», придумал космический корабль с водяным реактивным двигателем.
Однако в истории литературы сохранился лишь роман Жюля Верна. Более того, он породил своеобразную субкультуру, долгие годы подпитывавшую энтузиазм людей, посвятивших себя мечте о небе.
На самом же деле знаменитый фантаст взял за основу идею, предложенную еще Исааком Ньютоном в монографии «Математические начала натуральной философии» (1687). Эта работа заложила теоретические основы современной механики и баллистической космонавтики. Ньютон поставил следующий мысленный эксперимент. Представьте себе, писал он, высочайшую гору, пик которой находится за пределами атмосферы. Вообразите пушку, установленную на самой ее вершине и стреляющую горизонтально. Чем мощнее заряд используется при выстреле, тем дальше от горы будет улетать снаряд. Наконец при достижении некоторой мощности заряда снаряд разовьет такую скорость, что не упадет на землю вообще, выйдя на орбиту. Эта скорость ныне называется «первой космической» и для Земли она равняется 7,91 км/с.
Очень похожими словами аргументировал свою позицию и персонаж Жюля Верна — Дж. Т. Мастон, когда отстаивал проект колоссального орудия для обстрела Луны перед членами вымышленного «Пушечного клуба». Развив недюжинную энергию, эти выдающиеся господа сумели за несколько лет построить такую пушку и запустить снаряд к Луне.
Описанное в романе орудие весило 68 тысяч тонн, длина его составляла 274 метра, диаметр — 2,7 метра, толщина стенок — 1,8 метра. Изготовлено оно было из серого чугуна. В качестве взрывчатого вещества использовался пироксилин в количестве 164 тысяч килограммов.
Сначала предполагалось послать к Луне снаряд без пассажиров, но потом, по предложению француза Мишеля Ардана, внутри необыкновенного ядра была устроена каюта, в которой и решились отправиться в космическое путешествие трое смельчаков: сам Ардан, председатель клуба Импи Барбикен и капитан Николь.
Место расположения пушки было выбрано во Флориде около города Тампа-Таун на горе Стонсгилль (27°7′ с.ш., 5°7′ за).
Лафет орудия вызвал отчаянные дебаты в «Пушечном клубе». Мастон предлагал уложить ее на землю, доведя общую длину ствола до 800 метров. Однако восторжествовало мнение председателя Барбикена, который предложил установить пушку («колумбиаду») вертикально внутри подходящей горы.
Снаряд имел «гранатообразную» форму с наружным диаметром в 2,743 метра и высотой 3,658 метра. Для смягчения динамического удара при выстреле на дне ядра была налита вода, поверх которой наложили деревянный круг, плотно прилегающий к стенкам. Кроме того, вода разделялась двумя более тонкими кругами, которые при выстреле последовательно проламывались; при этом вода устремлялась через трубку, проложенную внутри стенок ядра к его вершине, выливаясь наружу.
Вес снаряда — около 8 тонн, а воды — 5700 килограммов. Сам снаряд был отлит из алюминия с толщиной стенок в 30 сантиметров. Для входа в ядро был проделан люк, для наблюдения за окружающим пространством — четыре окна. Внутри стенки были обшиты кожей, закрепленной на гибких пружинах.
Старт состоялся 1 декабря 186… года (автор намеренно не называет точную дату), и выглядело это так:
«Раздался ужасный, неслыханный, невероятный взрыв! Невозможно передать его силу — он покрыл бы самый оглушительный гром и даже грохот извержения вулкана. Из недр земли взвился гигантский сноп огня, точно из кратера вулкана. Земля содрогнулась, и вряд ли кому из зрителей удалось в это мгновение усмотреть снаряд, победоносно прорезавший воздух в вихре дыма и огня. <… >
Когда из колумбиады вместе со снарядом вырвался чудовищный сноп пламени, он осветил всю Флориду, а в Стонзхиллской степи, на огромном расстоянии, ночь на мгновение сменилась ярким днем. Гигантский огненный столб видели в Атлантическом океане и в Мексиканском заливе на расстоянии более ста миль. Многие капитаны судов занесли в свои путевые журналы появление необычайных размеров метеора.
Выстрел колумбиады сопровождался настоящим землетрясением. Флориду встряхнуло до самых недр. Пироксилиновые газы, вырвавшись из жерла гигантской пушки, с необычайной силой сотрясли нижние слои атмосферы, и этот искусственный ураган пронесся над Землей с быстротой, во много раз превышавшей скорость самого яростного циклона.
Ни один зритель не удержался на ногах: мужчины, женщины, дети — все повалились наземь, как колосья, подкошенные бурей. Произошла невообразимая суматоха; многие получили серьезные ушибы. <…> Триста тысяч человек на несколько минут совершенно оглохли, и на них словно напал столбняк».
Через два года после публикации «С Земли на Луну…» появился роман «Вокруг Луны» — история трех смельчаков, заключенных в алюминиевой оболочке снаряда, который несет их сквозь космос. Вместо четырех расчетных суток ядро пробыло в пути гораздо дольше. Оно облетело вокруг Луны и наконец, оказавшись в поле земного тяготения, вошло в атмосферу и благополучно «приземлилось» в океане.
Впоследствии идеи Жюля Верна неоднократно обсуждались учеными и инженерами. Еще в XX веке было показано, что проект этот неосуществим по целому ряду причин. Главнейшей из них называют перегрузки, которые убили бы всех пассажиров, находящихся внутри снаряда. Однако даже если бы однократного чудовищного ускорения удалось избежать путем равномерного размещения зарядов взрывчатого вещества по длине канала пушки, сопротивление воздуха не позволило бы вытолкнуть снаряд из ее жерла с первой космической скоростью, необходимой для преодоления сил притяжения Земли.
Полемика вокруг знаменитого романа породила несколько новых проектов «лунных» пушек. Один из них приведен в романе французских фантастов Жана Ле Фора и Анри Граффиньи «Необыкновенные приключения русского ученого» опубликованном в 1895 году.
В этом романе авторы описывают, как двое ученых отправились на Луну в снаряде, который был выброшен силою взрыва из пушки, устроенной вертикально в земле.
Стальное орудие длиной 80 метров и весом в 600 тонн планировалось разместить в вертикальной шахте. Внутри канала имелось 12 камер, наполненных «селенитом» (гипотетическим сверхмощным взрывчатым веществом). Все зарядные камеры должны быть соединены электрическими запалами, которые после взрыва нижнего запала автоматически производят последовательные взрывы боковых, обеспечивая приемлемое ускорение. В каждую из камер помещается полтонны селенита. У основания же закладывается целая тонна. Между зарядом и дном снаряда оставляется пространство в 50 сантиметров. Высота снаряда — 3,5 метра, а диаметр — 2 метра.

Первая пушка Дж. Т. Мастона
Место выстрела было выбрано в южном полушарии, на острове Мальпело, принадлежащем Колумбии.
В момент выстрела снаряд был выброшен к Луне. Сотрясение и перегрузку пассажиры перенесли благополучно. При падении на Луну рессоры и матрацы оказались способными смягчить силу удара, и путешественники остались живы.
Помимо вышеописанной пушки, авторы приводят рисунок другой — обычного типа, но громадных размеров, при помощи которой также можно было бы забросить снаряд на Луну.
Как мы видим, оба этих проекта являются лишь вариантами «колумбиады» и пушки Мастона. Но в романе имеется и третий, более оригинальный, проект.
Третий снаряд для путешествия на Луну был помещен в кратер американского вулкана Котопахи. Он был изготовлен из никелевой магнезии, которая весит в два раза легче алюминия и обладает большой прочностью. Общий вес снаряда — 600 килограммов. Он сборный и состоит из отдельных частей, приспособленных для перевозки на большие расстояния.
Для освещения внутренней каюты снаряда используется электрическая батарея с зарядом на 240 часов. Отопление производилось горением спирта. Для возобновления дыхательной среды был взят кислород, сгущенный до твердого тела в виде таблеток. Для удаления углекислого газа применялся едкий поташ.
Далее авторы описывают межпланетный полет в этом снаряде, который силой извержения вулкана был выброшен в межпланетное пространство. По данным авторов, скорость извержения вулкана Котопахи составляет 3–4 км/с. Будущие межпланетчики обнаружили в его кратере вертикальный канал глубиною 300 метров, упиравшийся в пласт обсидиана. При помощи специальных машин стенки канала были сглажены, а в основание его, диаметром 10 метров, опустили «лунный» снаряд. Поскольку снаряд был немного уже, то между ним и дном канала был положен кессон со сжатым воздухом, точно закрывавший сечение канала.
Когда все приготовления были закончены, а Земля и Луна находились в благоприятном расположении (25 марта, 18 часов 10 минут), пятеро путешественников расположились внутри снаряда. Еще раньше чувствительные сейсмографы указали на приближение извержения, но его искусственно ускорили взрывом обсидиановой плиты под снарядом.

Вторая пушка Фора и Граффиньи

Разрез вулкана Котопахи
Перед тем все пассажиры завернулись в матрацы. Когда пилот нажал кнопку, произошел страшный толчок, и все потеряли сознание. Между тем снаряд, вытолкнутый из жерла воздействием раскаленных подземных газов, на скорости 11 км/с преодолел земную атмосферу и оказался в межпланетном пространстве. Некоторое время спустя все путешественники пришли в чувство и благополучно пролетели к Луне.
Спуск на Луну по Фору и Граффиньи выглядел следующим образом. Хотя скорость падения будет равна 2500 м/с, однако благодаря «разреженности лунной атмосферы» снаряд при трении об нее не раскалится; в днище же его были встроены сильные пружины и рессоры, которые ослабят силу удара. Перед моментом прилунения космические путешественники снова завернулись в матрацы. И вот наконец… «ужасный толчок потряс весь вагон; люстра и лампы разбились на тысячи кусков, мебель, сорвавшись с мест, нагромоздилась в одну кучу». Впрочем, никто из путешественников при этом не пострадал.
Космические метательные машины
Идея использования артиллерии в качестве средства для запуска снарядов в космическое пространство была по-своему хороша, но не могла быть реализована прежде всего потому, что до середины XX века не существовало эффективного высококалорийного пороха, способного при выгорании придать снаряду необходимое ускорение. И тогда отдельные авторы попытались обойти эту проблему, предложив проекты метательных машин, вообще не нуждающихся ни в порохе, ни в каком-нибудь ином виде топлива.
В 1915 году уже знакомый нам Анри Граффиньи описал особую баллисту для метания снарядов скачала на высоту до 25 километров и на дальность свыше 100 километров. Согласно расчетам Граффиньи, для достижения таких результатов достаточна скорость в 11,5 км/с и мощность турбины в 1000 лошадиных сил.
Движущим элементом баллисты является турбопаровоз, вращающий вал центробежной машины при помощи турбины. На валу насажен брус с противовесом и пращей, где помещается снаряд весом до 100 килограмм. В нужный момент электрическое приспособление освобождает и выталкивает снаряд.

Малая баллиста Граффиньи
Несколько позже Граффиньи предложил новый вариант баллисты, но уже для метания большого космического корабля, получающего свою начальную скорость благодаря вращению огромного колеса, на окружности которого и крепится этот корабль. Баллиста приводится в движение от паровой турбины, и в нужный момент летательный аппарат освобождается и под воздействием центробежной силы летит вертикально к зениту.
В 1916 году в своей статье «Возможны ли путешествия на планеты?» неугомонный французский изобретатель опубликовал подробное описание своей третьей баллисты, выполненной в виде закрепленного на оси бруса с длиной плеча в 50 метров. На одном конце груза помещается «межпланетная граната» общим весом в четыре тонны, на другом — противовес. При числе оборотов 44 об/с конец бруса должен развить скорость, приблизительно равную 14 км/с, вполне достаточную для преодоления сил земного притяжения.
Сама «межпланетная граната» должна была иметь ракетный двигатель для изменения направления и скорости движения в космическом пространстве. Высота «гранаты» составляла 11 метров, диаметр — 4,2 метра. Внутреннюю полость Граффиньи разделил на пять этажей, на которых должны были размещаться: кладовая с запасами провианта, воды и жидкого воздуха, химическая лаборатория, столовая, каюты для пассажиров и обсерватория. «Граната» могла взять на борт трех пассажиров; запасы же провианта и воздуха обеспечивали космическое турне продолжительностью в два месяца.
Идея метания межпланетного корабля на Луну при помощи вращения нашла отражение и в рассказе знаменитого русского писателя Андрея Платонова «Лунная бомба», впервые опубликованном в 1926 году.
Платонов описывает свой проект так. Инженер Крейцкопф предложил правительству некоей Республики послать к Луне особый снаряд с пассажирами внутри:
«…Металлический шар, начиненный полезным грузом, укреплялся на диске, стационарно установленном на земле. Шар укреплялся на периферии диска; сам диск имел либо горизонтальное земной поверхности положение, либо наклонное, либо вертикальное — в зависимости от того, куда посылался снаряд: на земную станцию или на другую планету.
Диску давалось достаточное для достижения снарядом со станции назначения вращение; по достижении диском необходимого числа оборотов, в нужном положении диска, соответствовавшем направлению линии полета, шар автоматом отцеплялся от диска и улетал по касательной к диску. Все совершалось по формуле центробежной силы, включив в нее коэффициент сопротивления среды.
Безопасный спуск снаряда на Землю (или на другую планету) обеспечивался автоматами на самом снаряде: при приближении к твердой поверхности замыкался в автомате ток и сжигалось некоторое количество взрывчатого вещества в том же направлении, что и полет, — отдачей достигалось торможение полета, и падение превращалось в плавный безопасный спуск. Взлет снаряда также был безопасен и плавен, так как скорость кидающего диска начиналась с нуля.
Крейцкопф предложил пустить первый снаряд по такому пути, чтобы он описал кривую вокруг Луны, близ ее поверхности, и снова вернулся на Землю.
В «лунной бомбе» будут установлены все необходимые аппараты, автоматически запечатлевающие в межпланетном пространстве, близ Луны, температуру, силу тяготения, общее состояние среды, строение электромагнитной сферы; наконец, киноаппараты воспримут через особые микроскопы все, что несется мимо снаряда».

Французский проект кругового туннеля для разбега межпланетного снаряда





Продольный и поперечные разрезы французского межпланетного снаряда
По мнению Крейцкопфа (и Платонова), стоимость сооружения диска и «луной бомбы» к нему не должна была превысить 600 тысяч рублей.
В 1927 году во Франции появился новый проект метательной машины для запуска снаряда к Луне. На этот раз вместо вращающего колеса было предложено использовать круговой туннель диаметром в 20 километров с проложенным внутри рельсовым путем. По этому пути должна была разгоняться тележка особой конструкции с коньками вместо колес. Движение тележки осуществлялось за счет вращения ротора, закрепленного внизу ее рамы и приведенного в сцепление со статором, проложенном внутри рельсов по всей их длине. Воздух внутри туннеля предполагалось сильно разрядить для уменьшения сопротивления движению снаряда.
Туннель в определенном месте имел добавочную ветку, идущую по касательной с уклоном вверх. После достижения снарядом необходимой скорости стрелка железной дороги переводилась на эту ветку, в конце которой тележка должна была остановиться, а снаряд вылететь наружу со скоростью 12,5 км/с.
Дальнейшее движение французского снаряда в космическом пространстве управлялось выпуском «взрывных газов» (реактивный двигатель). Внутренняя полость снаряда, как и в проекте Граффиньи, была разделена на пять этажей, на которых от носа к корме размещались: обсерватория, жилое помещение на трех человек, отсек реактивного двигателя и кладовая.
Целью космической экспедиции продолжительностью в семь дней должен был стать плавный облет Луны, фотографирование ее поверхности с близкого расстояния и возвращение на Землю.
Космические аэростаты и дирижабли
К началу XX столетия история проектирования и строительства управляемых аппаратов легче воздуха в Европе насчитывала уже более века — с того дня, когда 5 июня 1783 года при большом скоплении жителей французского города Аннон братья Этьен и Жозеф Монгольфье запустили на высоту двух километров шар, изготовленный из шелка и наполненный горячим воздухом. Разумеется, сама идея появилась много раньше и к моменту взлета первого «монгольфьера» была обоснована теоретиками. Более того, еще в 1649 году известный своими неожиданными прожектами поэт и острослов Сирано де Бержерак описал в качестве одного из средств для полета к иным мирам именно воздушный шар.
Однако более подробное описание полета в космос на воздушном шаре дал другой литератор — знаменитый американский писатель Эдгар По. В своей повести «Необыкновенное приключение некоего Ганса Пфааля», изданной в 1835 году, он рассказывает совершенно фантастическую историю бюргера Пфааля из Роттердама, отправившегося на Луну на собственноручно изготовленном аэростате, наполненном смертельно ядовитым газом, который (по утверждению самого Пфааля) является «составной частью азота» и имеет плотность в 37,4 раза меньше плотности водорода. В качестве материала для оболочки космический путешественник использовал не традиционный шелк, а «кембриковый муслин», покрытый каучуком и тройным слоем лака. Объем шара составлял 40 тысяч кубических футов (1133 кубических метра), что позволяло ему поднять на произвольную высоту самого Пфааля, припасы в дорогу плюс 79 килограммов балласта.
Весьма примечательно, что в этой повести Эдгар По постоянно ссылается на существовавшую в то время теорию, согласно которой разряженный воздух распространен до границ Солнечной системы и сгущается у планет. Этой теорией пытались, в частности, объяснить отклонения в траектории кометы Энке и различные эффекты, наблюдаемые астрономами при прохождении планет на фоне Солнца. Подобная гипотеза значительно расширяла рамки применимости аппаратов легче воздуха и, как следствие, направляла творческую фантазию ученых и инженеров в русло выработки самых невероятных проектов, которые сегодня вызывают лишь усмешку.
Впрочем, монгольфьер, управляемый теплом горелки, недолго очаровывал ученый люд. Почти сразу появились предложения совместить баллон, наполненный легким газом, с двигателями прямой реакции, позволяющими менять направление и скорость полета в зависимости от воли аэронавта

Итальянский реактивный аэростат
Летом 1784 года два парижских изобретателя аббат Миоллан и господин Джаннинэ придумали реактивный монгольфьер. Они полагали, что если в боковой части воздушного шара сделать отверстие, то нагретый воздух, выходя из отверстия, будет сообщать шару движение в сторону противоположную той, где находится отверстие. Для опытов ими был построен огромных размеров монгольфьер, но вследствие сильной тяги, вызванной боковым отверстием, шар во время наполнения вспыхнул и сгорел.
В 1831 году в Венеции было издано сочинение «Открытие, как управлять воздушным шаром». В нем анонимный автор описывал применение ракет, подвешенных к шару. Их энергии, по его мнению, достаточно для того, чтобы достичь даже Луны. Поворотами труб можно менять направление движения этого необычного корабля.
В 1843 году в российских газетах появились сообщения об изобретении, сделанном военным инженером Эмилем Жиром, который утверждал, что решил проблему управления полетом воздушного шара с помощью созданного им механизма, позволявшего шару «находить» благоприятный ветер путем автоматического набора высоты или снижения без сбрасывания балласта или подкачки газа. Жир намеревался осуществить подъем и спуск с помощью реактивной силы, для чего предусматривался запас сжатого воздуха в гондоле и ручной компрессор для пополнения этого запаса.
Спустя шесть лет Эмиль Жир направил губернатору Кавказа графу Воронцову рукопись объемом в 208 страниц, озаглавленную «О способах управления воздушным кораблем» и подписанную псевдонимом «инженер Третесский».
Третесский намеревался снабдить воздушный корабль выхлопными соплами, направленными во все стороны. Для движения в каком-то направлении требовалось соединить соответствующее сопло с «генератором реактивной струи», если использовать современную терминологию. Реактивная сила создавалась струей сжатого воздуха, пара или воздуха, подогреваемого спиртовой горелкой.
В 1866 году в Санкт-Петербурге вышла в свет небольшая книжка капитана 1-го ранга Николая Михайловича Соковнина «Воздушный корабль». Аппарат, описанный в ней, относился уже к типу дирижаблей и управлялся турбореактивным двигателем.
Мягкая оболочка дирижабля наполнялась аммиаком, заключенным в 12 баллонетах. Последние помещались в ячейках ложкообразной оболочки, разделенной одной продольной и пятью поперечными перегородками на соответствующее число камер, открытых снизу. К оболочке на вертикальных стержнях подвешивалась платформа, на которой должны были располагаться люди и двигатель. Материалом для корпуса и платформы служил особый картон (изобретенный венгром Черлением), бамбук и трубчатая сталь. Длина корабля составляла 50 метров, вес — 2623 килограмма. Движение кораблю придавала реактивная воздушная струя, создаваемая алюминиевым турбореактивным двигателем и проходящая через систему труб.

Реактивный дирижабль Соковнина
Дирижабль Соковнина трудно было бы отнести к «космическим» проектам, если бы сам Николай Михайлович не рассмотрел такую возможность в своей книге, предложив модифицированную конструкцию корабля, снабженную пороховыми ракетными двигателями.
И в более поздние времена выдвигались проекты дирижаблей с реактивной тягой. В 1892 году мексиканский инженер Николас Петерсен взял патент на дирижабль, приводимый в движение ракетным двигателем.
Непосредственно под оболочкой дирижабля Петерсена размещалось пассажирское помещение с окнами. На корме имелась впадина, в которую вставлялся раструб в виде усеченного конуса, узкий конец которого примыкал к особому барабану револьверного типа, заряженному ракетами. Барабан мог вращаться вокруг двух осей. Одна ось позволяла барабану вращаться вокруг горизонтальной оси при помощи рычага, другая — позволяла барабану поворачиваться вокруг вертикальной оси при помощи винта и зубчатой передачи. Ракеты, помещенные в барабан, последовательно подрывались при помощи электрического запальника. Управление направлением полета достигалось за счет поворота всего кормового ракетного двигателя вокруг упомянутых двух осей.
Этот проект, интересный по идее, малопригоден на практике, так как имеется целый ряд неудобств: движение будет происходить толчками, разрушительными для конструкции дирижабля; регулировка и замена ракет должна была производиться вручную, что утомительно и ненадежно; не продумана безопасность от взрыва
После того как научно-исследовательские полеты на свободных аэростатах (и более поздние — на стратостатах) опровергли теорию о том, что с высотой плотность и состав воздуха не меняются, проекты «космических» дирижаблей с ракетными двигателями сошли на нет. Но интересные идеи, по-видимому, никогда не исчезают бесследно. В последнее время заговорили о так называемых комбинированных реактивно-аэростатических системах. Действительно, ничто не мешает использовать «дармовую» энергию выталкивающей силы, заменив первые ступени тяжелых ракет-носителей баллонами с водородом. Более того, этот водород можно затем использовать в последующих ступенях.
Есть и примеры использования реактивно-аэростатической схемы на практике. В британском проекте «Рокун» использовался аэростат типа «Скайхок», который поднимал геофизическую ракету в точку старта, находившуюся на высоте 25 километров.
Не так давно американская фирма «Боинг Эйрплейн» спроектировала тороидальный баллон, предназначенный для подъема и запуска космических ракет весом до 45 тонн. Максимальный диаметр баллона 95 метров, минимальный — 43 метра. Баллон разделен на 16 отсеков и выполнен из майларовой пленки. Этой же пленкой затянуто внутреннее отверстие тора. Проведенные исследования показали, что струя от двигателей ракеты не вызывает разрушение баллона, а значит вся конструкция может быть многоразовой. Баллон заполняется водородом или гелием, высота его подъема с ракетой составляет 6 километров, скорость в горизонтальном направлении — 120 км/ч. Последняя достигается при одновременной работе трех установленных на баллоне авиационных двигателей мощностью 3400 лошадиных сил. Двигатели закреплены на шарнирах, что позволяет аппарату маневрировать, парируя ветровые потоки.
Разумеется, мысль изобретателей и романистов в начале XX века не ограничивалась перебором новых вариантов традиционных схем. Люди, размышлявшие о космических путешествиях и контактах с инопланетными цивилизациями, в своих мечтах намного опережали время, и технические проблемы, связанные с реализацией самых фантастических проектов, не пугали их. Ведь каждый день приносил новые открытия, мир менялся буквально на глазах, и казалось, так будет всегда.
Среди самых необычных проектов того времени особняком стоит так называемый «экран тяготения» (сегодня его бы назвали «антигравитационным двигателем»).
Как мы уже отмечали, автором принципа антигравитации является Александр Дюма, упомянувший в сочинении «Путешествие на Луну» некое вещество, отталкиваемое Землей.
В 1901 году к той же идее обратился английский фантаст Герберт Уэллс. Читал ли он перед тем Дюма, доподлинно неизвестно, но в романе «Первые люди на Луне» мы встречаем ученого Кейвора, синтезировавшего вещество, «непрозрачное для сил тяготения» — «кейворит». Это открытие позволило ему построить корабль, свободно перемещающийся в любой среде. Уэллс описывает его так:
«Внутреннюю стеклянную оболочку шара можно устроить непроницаемой для воздуха и, за исключением люка, сплошной; стальную же оболочку сделать составной из отдельных сегментов, так что каждый сегмент может передвигаться, как у свертывающейся шторы. Ими нетрудно будет управлять при помощи пружин и подтягивать их или распускать посредством электричества, пропускаемого через платиновую проволоку в стекло. Все это уже детали. Вы видите, что за исключением пружин и роликов внешняя кейворитная оболочка шара будет состоять из окон или штор, — называйте их как хотите. Вот когда все эти окна или шторы будут закрыты, то никакой свет, никакая теплота, никакое притяжение или лучистая энергия не в состоянии будут проникнуть внутрь шара, и он полетит через пространство по прямой линии, как вы говорите. Но откройте окно, вообразите, что одно из окон открыто! Тогда всякое тяготеющее тело, которое случайно встретится на пути, притянет нас».
Разумеется, проект Герберта Уэллса оказался весьма уязвим для критики. Яков Перельман в примечаниях к изданию романа на русском языке в частности указывает, что энергия, необходимая для перемещения штор, была бы огромна и равна той, которую следует затратить для переноса защищаемого щитом-экраном тела в бесконечно удаленную точку пространства, где сила притяжения равна нулю. Согласно расчету Перельмана, для закрытия всех экранов аппарата Кейвора потребовалось бы приложить мощность в 42 миллиона лошадиных сил!
Однако критика не смутила фантастов. В 1908 году появился роман-утопия «Красная звезда» Александра Богданова. В этом романе писатель дает описание двух летательных аппаратов: «аэронефа», предназначенного для полета в атмосфере, и «этеронефа», на котором герои произведения отправляются с Земли на Марс. Нас прежде всего интересует второй аппарат, поэтому поговорим о нем подробнее.
Внешний вид этеронефа — шар со сглаженным сегментом внизу.
На верхнем (четвертом) этаже помещаются баллоны с «минус-материей», которая нейтрализует силу тяготения, и весь аппарат может висеть в воздухе без опоры. Движение же этеронефа в атмосфере или в безвоздушном пространстве достигается при помощи реакции от взрывов особого вещества. Вот как описывает Богданов действие двигателя этеронефа:
«Движущая сила этеронефа — это одно из радиирующих веществ, которые нам удается добывать в большом количестве. Мы нашли способ ускорять разложение его элементов в сотни тысяч раз; это делается в наших двигателях при помощи довольно простых электрохимических приемов. Таким способом освобождается громадное количество энергии. Частицы распадающихся атомов разлагаются со скоростью, которая в десятки тысяч раз превосходит скорость артиллерийских снарядов. Когда эти частицы могут вылетать из этеронефа только по одному определенному направлению, то есть по одному каналу с непроницаемыми для них стенками, тогда весь этеронеф движется в противоположную сторону, как это бывает при отдаче ружья или откате орудия. По известному закону живых сил, можно рассчитать, что незначительной части миллиграмма таких частиц в секунду вполне достаточно, чтобы дать этеронефу равномерно-ускоренное движение».

Этеронеф Александра Богданова
Сама «движущая машина» находится на нижнем (первом) этаже, в середине центральной комнаты. Вокруг нее с четырех сторон проделаны в полу круглые стеклянные окна. Основную часть машины составлял вертикальный металлический цилиндр трех метров высотой и полметра в диаметре, сделанный из осмия. В этом цилиндре происходит разложение «радиирующей материи». Остальные части машины, связанные разными способами с цилиндром — электрические катушки, аккумуляторы, указатели с циферблатами, — располагались вокруг. Дежурный машинист благодаря системе зеркал видел их все сразу, не сходя со своего кресла.
С Земли этеронеф взлетает совершенно бесшумно, без толчков и значительных перегрузок. Ускорение при старте — всего 2 см/с. Наибольшая скорость этеронефа — 50 км/с, а крейсерская — 25 км/с. Путь от Земли до Марса по особой траектории занимает два с половиной месяца
Среди идей, высказанных Богдановым в романе «Красная звезда», есть и несколько таких, которые сегодня можно назвать провидческими. Что касается космонавтики, то писатель, в частности, указал на необходимость создания системы охлаждения двигателя и особого вычислительного устройства, позволяющего быстро рассчитывать элементы траектории этеронефа.
В разных вариантах и под разными названиями «минус-материя» фигурирует в произведениях многих популярных фантастов того времени. В повестях Вивиана Итина мы встречаем «онтэит, стремящийся от массы». У Фезандье в рассказе «Таинственные изобретения доктора Хэкенсоу» — новый металл легче воздуха «радалюминий».
В романе Николая Муханова «Пылающие бездны» (1924) описан межпланетный корабль «санаэрожабль», при помощи которого земляне в 2400 году летают на Землю, Марс и астероиды. К этому времени, по мнению Муханова, будет открыт лунный элемент «небулий» (еще один вариант «минус-материи»). Посредством этого элемента будет «преодолено притяжение Земли и закон инерции».
Санаэрожабль управляется за счет «компенсации в специальном аккумуляторе потока электронов небулия». Сам он имеет форму сильно вытянутого эллипсоида и, в расчете на «сжатие при быстром движении», изготовлен из упругого, эластичного материала. Чтобы уменьшить нагрев оболочки корабля при прохождении через атмосферу, на санаэрожабле используется приспособление для создания вокруг него охлаждающей воздушной оболочки. Контроль за всеми системами корабля осуществляется через пульт, за которым сидит капитан-пилот, однако в случае надобности санаэрожабль может управляться автоматически. Измерители скорости движения, сжатия корпуса и навигационные указатели работают все время полета, выводя свои показания на многочисленные циферблаты. Максимальная скорость санаэрожабля — 100 тысяч км/с.

Санаэрожабль Муханова
Немецкий писатель Курт Лассвиц в романе «На двух планетах», появившемся в русском переводе в 1925 году, представил вниманию публики свое видение организации сообщения между Землей и Марсом, основанной на применении «диабарического» вещества, которое «парализует влияние лучей тяготения, пропуская их через себя, не задерживая».
Главными героями немецкого писателя стали не люди, а марсиане. Именно им, по мнению Лассвица (да и Богданова тоже), принадлежит приоритет в освоении Солнечной системы. В качестве опорных баз своей колонизаторской деятельности на Земле марсиане выбрали оба полюса, разместив над ними геостационарные орбитальные станции.

Космическая станция марсиан по Курту Лассвицу
Станция над Северным полюсом находилась прямо по направлению земной оси на высоте 6356 километров. Внешне она напоминала гигантское колесо с внешним диаметром в 120 метров и внутренним — в 50 метров. Кроме того, подобно Сатурну, колесо было опоясано тонкими широкими кольцами, поперечник которых достигал 300 метров. Они представляли собой систему маховых колес, вращавшихся без трения вокруг внутреннего кольца и поддерживающих его плоскость в положении, перпендикулярном земной оси.
Источником энергии для станции марсиан служило Солнце. Солнечная энергия накапливалась при помощи большого количества плоских зеркал, расположенных как на самом кольце, так и на внешних маховых колесах.
Внизу, под орбитальным кольцом, располагалось наземная база, сооруженная на искусственном острове, в центре которого имелось круглое углубление диаметром около 100 метров. В пространстве между внутренним отверстием орбитального кольца и углублением на Земле установлено «абарическое поле».
Внутри зоны, ограниченной полем, полностью отсутствовала сила тяжести. Для сообщения между островом и орбитальным кольцом вверх и вниз по абарическому полю передвигалась специальная вагонетка. На станциях имелись «дифференциальные бароскопы», стрелки которых точно указывали положение вагонетки. С помощью соответствующего прибора дежурный марсианин регулировал ее движение, а при подходе к орбитальному кольцу она улавливалась специальной сеткой.
Для передачи информации между кольцом и Землей марсиане пользовались «световыми лучами». И, как с восторгом сообщает нам Лассвиц, могли отправлять не только короткие телеграммы, но и голосовые послания по телефону.
Орбитальное кольцо служило не только для сбора солнечной энергии и наблюдения за Землей — оно также использовалось как промежуточный пункт между нашей планетой и Марсом.
Движение марсианского межпланетного корабля осуществлялось за счет «изменения диабаричности» и регулировалось так называемыми «направляющими» или «корректирующими» снарядами. Эти снаряды выстреливались из корабля, когда требовалось изменить направление или скорость движения. Обычно корабль вмещал до 60 пассажиров. Изготовлен он был из особого материала — «стеллита», очень прочного в вакууме, но подверженного быстрой коррозии в условиях влажной атмосферы.
Труд немецкого романиста поражает количеством научно-технических прогнозов, которые так или иначе сбылись. Чего стоит хотя бы упоминание о «солнечных батареях»! А «диабарический» тоннель вполне можно считать прототипом «космического лифта», о котором мы еще поговорим в главе 21.
Отметим также, что Лассвиц был одним из первых (на языке оригинала его роман увидел свет аж в 1915 году!), кто заговорил о необходимости строительства орбитальной станции как перевалочного пункта между Землей и планетами.
Космические корабли, которые сегодня называют фотонными, тоже имели свои прототипы, придуманные на исходе XIX века.
Первый такой проект предложили неутомимые Жан Ле Фор и Анри Граффиньи в уже известном нам сочинении «Необыкновенные приключения русского ученого». Описывая цивилизацию селенитов, намного обогнавшую землян в техническом развитии, французские романисты рассказывают о летательном аппарате, с помощью которого жители Луны сумели достигнуть Венеры. Двигательной силой для. этого аппарата служило отталкивающее действие солнечного света.
Экспедиция на Венеру, согласно Фору и Граффиньи, выглядела следующим образом.
На вершине лунной горы был установлен параболический рефлектор высотой 50 метров и шириной 250 метров, изготовленный из вещества, отражающего свет, — «селена». Сам аппарат представлял собой полый шар диаметром 10 метров, сделанный из того же материала.

Космический аппарат селенитов по Фору и Граффиньи
Так как подъемной силы корабля было недостаточно для перевозки с Луны на Венеру пятерых путешественников, то было решено прямо в пути отделиться от основного аппарата на особом модуле. Этот модуль состоял из гондолы, прикрепленной металлическими канатами к плоскому экваториальному селеновому кругу диаметром 30 метров. Этот круг должен был играть роль парашюта при спуске в атмосфере Венеры.
В момент отлета аппарат поместили в фокус рефлектора, окруженный селеновыми поворотными зеркалами. Когда последние были повернуты надлежащим образом, аппарат под воздействием отталкивающей силы лучей унесся по направлению к Венере со скоростью 28 тысяч км/с
Другой проект «лучевого» межпланетного корабля для полета на Венеру предложил Борис Красногорский в своем «астрономическом» романе «По волнам эфира», изданном в 1913 году.

Схема межпланетного корабля Красногорского
Корабль под названием «Победитель пространства» был построен на Обуховском заводе Петрограда и представлял собой «вагон для пассажиров» с закрепленным на нем кольцевым зеркалом. По мнению автора, лучи Солнца должны производить давление на полированную поверхность зеркала с силой, достаточной для того, чтобы корабль достиг космических скоростей. Поворачивая зеркало относительно вагона и Солнца и сообразуясь с силами притяжения планет, можно уменьшать силу давления лучей и менять направление движения.
Зеркало имело диаметр 35 метров и состояло из тонких листов отполированного металла. Листы накладывались на прочную раму из сплава алюминия, свинца и ванадия (Красногорский называет этот сплав «максвеллием»). При этом вагон соединялся с зеркалом шарнирно. Для закрытия отражающей поверхности, когда необходимо уменьшить лучевое давление, служили шторы из черного шелка, натягиваемые при помощи системы шнуров.
Сам вагон имел форму цилиндра со сферической крышей. Высота его — 4,5 метра, диаметр — 3 метра. Стенки вагона сделаны двойными; для обеспечения теплоизоляции из пространства между стенками выкачан весь воздух. Вес вагона с четырьмя пассажирами, запасами кислорода, провианта и воды на 60 дней составлял 2160 килограммов.
Момент старта выбирается во время восхода или захода Солнца, когда лучи нашего светила косо падают на Землю. Аппарат устанавливается на платформу из четырех крестообразных балок, к концам которых прикрепляются тросы из четырех наполненных водородом шаров, которые поднимают платформу со стоящим на ней кораблем как можно выше над Землей, пока лучевое давление не снимет корабль с платформы и не унесет его в межпланетное пространство, — еще один вариант комбинированной аэрокосмической схемы, о которой мы говорили выше.
Согласно тексту романа, в качестве стартовой площадки было выбрано Марсово поле в Петрограде, время отбытия — 18.00, 28 июля. Точно в назначенное время канаты, удерживающие корабль у земли, были отрублены, и водородные аэростаты понесли его вверх. На высоте 8,5 километра солнечные лучи сняли корабль с площадки, и он устремился к Луне, мимо которой собирались пролететь межпланетные путешественники по пути на Венеру.
По расчетам автора, весь полет с Земли на Венеру, включая подъем и спуск в земной атмосфере, должен был занять всего лишь 42 дня. Однако почти сразу «Победитель пространства» оказался в метеоритном потоке «персеид». Путешественники пытались маневрировать, но один из крупных камней попал в аппарат, и корабль потерял свое зеркало. Увлекаемый метеоритным потоком «Победитель пространства» вошел в земную атмосферу и рухнул в Ладожское озеро, где его подобрал пароход.
В следующем романе под названием «Острова эфирного океана» Красногорский описывает новую экспедицию на «Победителе пространства». Она заканчивается более результативно, хотя путешественников и преследуют злобные конкуренты с Запада на построенном ими и вооруженном пушками межпланетном корабле «Patria».
Впоследствии идея «лучевых» кораблей легла в основу целого семейства проектов «солнечных парусников», о которых мы подробно поговорим в главе 19.
Электрические межпланетные корабли
Следующий тип космических кораблей, описываемых романистами начала XX века, — это электрические корабли. В этих кораблях энергия, необходимая для полета в межпланетном пространстве, поставляется «силой электричества». До действующей модели, электротермического двигателя Валентина Глушко еще далеко, и романисты в данном случае избегают подробных описаний силовых установок кораблей, намекая на существование веществ или законов, пока еще неизвестных земной науке.
Писательница В. И. Крыжановская в романе «На соседней планете» (1903 год) приводит описание перелета с Земли на Марс в особом космическом аппарате на двух человек. Придуманный романисткой корабль имел форму сигары, которая на одном из концов заканчивалась огромным пропеллером. В стенках корабля имелись четыре окна, закрытых толстым стеклом. Вверху было устроено входное отверстие, прикрытое крышкой. Внутри аппарата находилось множество прозрачных шаров, наполненных губчатым веществом. В носу корабля устанавливалось сиденье из мягких подушек, а перед ним — «электрический двигатель» с подвижным рулем, как у велосипеда (видимо, прообраз современного джойстика!).
Взлет с Земли происходил следующим образом. Со стартовой площадки корабль поднялся при помощи воздушного шара На определенной высоте корабль оказался в мощном «электрическом потоке», пущенном жителями Марса. Пропеллер, установленный на корме, уловив их, завертелся; шары с губчатым веществом получили одноименный заряд, и под воздействием сил электростатического притяжения корабль полетел к Марсу.

Межпланетный корабль Крыжановской
При всех очевидных несуразностях данного проекта в книге Крыжановской попадаются и весьма любопытные страницы. Вот, например, как описан момент прибытия «электрического» корабля на Марс:
«…Вдруг в этом море паров показалась большая зеленоватая звезда, которая неслась навстречу земному кораблю. Скоро можно было разглядеть громадную, длинную трубу такой же формы, как аппарат, занятый Атарвой [Атарва — маг и пилот корабля проекта Крыжановской. — А. П.], но только втрое толще и длиннее; широкие электрические лучи, подобно веслам, выходили из него. Сильный луч света был направлен прямо на корабль Атарвы. Когда оба аппарата, с поразительной быстротой несшиеся один на другого, были на расстоянии не более одной секунды один от другого, передняя часть большого аппарата быстро откинулась. Свет на земном снаряде тотчас же угас, и он, словно ящерица, скользнул внутрь встреченного большого корабля. Последний тотчас же повернул и, как стрела, помчался назад.
Мало-помалу полет стал замедляться. Потом корабль вошел в узкий и темный, как туннель, коридор и, наконец, проник в большую залу, покрытую прозрачным куполом. В этой зале корабль остановился на нарочно устроенной для него площадке. Могучий ток со свистом вырвался из аппарата, прогремел под сводом туннеля и потом все стихло».
Не правда ли, этот фрагмент очень напоминает эпизод из современного фантастического фильма типа «Звездных войн»? Именно так мы представляем себе ближайшее будущее космических пилотируемых систем. Более того, подобный вариант орбитальной «стыковки» неоднократно рассматривался в проектах 70-х годов XX века, о чем мы еще поговорим.
Другой вариант марсианской экспедиции на электрическом корабле предложил Л. Б. Афанасьев в фантастической повести «Путешествие на Марс». Аппарат Афанасьева, получивший название «Галилей», был сделан из металла и имел вид конуса. Внутреннюю полость персонажи-конструкторы разделили на три этажа: на первом (нижнем) этаже располагался склад с провиантом и водой, аппараты для производства искусственного воздуха, резервуары для поглощения углекислоты и нечистот; второй этаж занимала большая общая зала, а верхний был разделен на четыре «квадранта», каждый их которых представлял собой отдельную комнату для пассажиров. Стены корабля были очень толстые и состояли из нескольких простенков, между которыми была залита вода, которая, по мнению автора, способствовала смягчению «первого толчка» при старте.
Для обеспечения старта был построен «нижний электрический механизм, остающийся при отлете на Земле» и придающий «Галилею» начальное ускорение, а на самом корабле имелись «электрические машины», вырабатывающие мощное электростатическое поле, отталкивающая или притягательная сила которого служила основой для движения корабля в межпланетном пространстве.

Электрический межпланетный корабль Афанасьева
Отправление с Земли (из пригорода Лондона), по Афанасьеву, выглядело так:
«Пилот нажал кнопку. Электрические машины пришли в действие. «Галилей» весь как-то дрогнул и подбросил вверх своих пассажиров. Однако все обошлось благополучно, и мягкие стены спасли всех от ушибов. Все свершилось настолько тихо и незаметно, что не верилось, в самом ли деле снаряд дал нужный толчок. Пилот бросился к одному окну и порывисто стал отвинчивать гайки, закрывающие его. Через минуту внутренняя закладка отпала. Тогда он надавил электрическую пружину, — отпала внешняя закладка и обнаружилось эллиптическое окно, сделанное из тонкого хрусталя».
Перелет от Земли до Марса и обратно для пятерых пассажиров занял полтора года.
Еще один проект электрического корабля был предложен английским сочинителем Джоном Джекобом Эстором в романе «Путешествие в другие миры», перевод которого на русский язык появился в 1900 году.
Действие романа происходит в 2000 году. Трое ученых отправляются в путешествие на Юпитер и Сатурн (само по себе очень оригинально, если учесть, что подавляющее большинство авторов того времени посылали своих героев на Луну или Марс, в лучшем случае — на Венеру). Движение корабля в межпланетном пространстве основано на изобретенном персонажами способе «отталкивания от планет». Вот как Эстор описывает этот способ:
«— Не странно ли, — заметил д-р Кортланд, — что хотя уже целый век тому назад было известно, что тела, заряженные разными электричествами — положительным и отрицательным, — притягивают друг друга, а те, которые заряжены одинаковым электричеством, отталкивают друг друга, никто не подумал воспользоваться этим?..
— Постойте, я догадался! — воскликнул Эйро. — Мы можем построить не пропускающий воздуха снаряд, герметически закупориться в нем и пустить его таким образом, чтобы он отталкивался магнетизмом Земли; тогда он отскочит от нее с одинаковой или такой силой, которая превосходит притяжение Земли. Я думаю, что Земля имеет такое же отношение к пространству, как отдельные частицы ко всякой твердой, жидкой или газообразной материи: как частички стремятся разъединиться под влиянием теплоты, так и Земля оттолкнет этот снаряд, если надлежащим образом применить электричество, которое есть не что иное, как другая форма теплоты. Это может и должна сделать апергия. <…> В апергии мы имеем противовес тяготению, противовес, который должен существовать, иначе система уравновешивания сил в природе будет нарушена».
«Апергетический» корабль Эстора, получивший название «Каллисто», имел вид короткого усеченного цилиндра диаметром 7,62 метра и высотой 6,4 метра. Стены, крыша и пол сделаны двойными. Материалом для корпуса служил «беррилиум». В простенке помещалась минеральная вата, защищающая от холода. Снаружи корабля был устроен желоб для «собирания дождя на Юпитере и Сатурне».
Внутри «Каллисто» имел два этажа и небольшую вышку в куполе — для астрономических наблюдений. Широкое плоское основание и низкий центр тяжести должны были стабилизировать движение корабля в атмосфере Юпитера, где, по мнению автора, дуют сильные ветры.
Старт корабля состоялся 21 декабря 2000 года в 11 часов утра из Нью-Йорка. Облетев Луну и воспользовавшись зарядом апергетической силы, корабль разогнался до скорости 1,5 миллиона километров в час. Путешествие к планетам-гигантам, высадка на их поверхность и последующее возвращение на Землю заняли у межпланетчиков Эстора чуть менее семи месяцев.
Электронные межпланетные корабли
В самом начале «космического» века было сделано несколько принципиально важных открытий в области строения атома Вспомним хотя бы, что именно тогда была открыта радиоактивность, выделены новые элементы — полоний и радий — и сформулированы положения квантовой теории.
Разумеется, все эти открытия широко популяризировались и стали предметом обсуждения не только ученых, но и мечтателей. Очень скоро появились и романы, в которых две идеи — управление энергией атома и космические перелеты — совмещались в одну. В виртуальный космос литераторов прорвались межпланетные корабли с атомными двигателями, но, как мы впоследствии увидим, они лишь ненамного опередили вполне реальные модели и прототипы. Наверное, еще и потому, что в этот раз профессиональные изобретатели не захотели отдать красивую и перспективную идею на «растерзание» литераторам, а занялись перебором вариантов самостоятельно. Среди этих изобретателей был и австриец Франц Улинский.
Франц Улинский родился в 1890 году и принадлежал к старинному польскому роду. Во время Первой мировой войны Улинского благодаря его работам по конструированию газовых турбин перевели в австро-венгерский авиаотряд и командировали в Высшую техническую школу в Вене. Далее он в качестве технического офицера был назначен руководителем работ моторного авиазавода. Именно в это время Улинский, помимо исполнения своих служебных обязанностей, занялся теорией межпланетных сообщений и изобрел дифференциальный парашют большой грузоподъемности. (По утверждению самого Улинского, свою первую модель межпланетного корабля на основе порохового ракетного двигателя он построил еще в 1901 году, что, конечно же, вызывает сомнения у скептически настроенного исследователя.)
В 1920 году Франц Улинский опубликовал серию статей, в которых изложил подробности двух проектов космических кораблей, названных им «электронными». Первый корабль предназначался для перелетов внутри Солнечной системы и приводился в движение энергией нашего светила. На этом корабле Улинский предлагал установить огромный диск из термоэлементов, представляющих собой наборы металлических пластин, образующих термопары. Получаемая энергия направлялась в «электро-эжекторы», установленные на внешней подвеске и создающие поток электронов, который толкал корабль подобно струе газов из реактивного двигателя.
Корабль второго типа, предложенный сметливым австрийцем, внешне был похож на первый, но использовал внутриатомную энергию вещества, а потому не нуждается в огромном диске из термоэлементов. Соответственно, и границ для перемещений такого корабля практически не существует, и Улинский называл его «мировым» (в значении «всемирный»).
Согласно проекту, «мировой» корабль должен иметь шарообразную форму, так как эта форма оптимальна для устройства карданной подвески с электро-эжекторами, а кроме того оказывает наибольшее сопротивление разрыву оболочки при внешних и внутренних нагрузках. Оболочка корабля должна состоять из следующих частей. Внешняя — стальная, изнутри усиленная распорками; распорки обложены асбестовыми листами. С внутренней стороны оболочка прикрыта фанерными щитами с прокладкой из прорезиненной ткани.
Внутри помещение корабля разбито на шесть этажей, которые соединены друг с другом при помощи лестницы. Нижний этаж занят под машинный зал. На втором этаже — трюм для груза. На третьем располагаются кухня, уборные, ванны. На четвертом — пассажирские каюты. На пятом — служебные помещения и прогулочная палуба. На шестом — верхний салон.
Кабина пилота находится на самом верху шарообразного корабля, у его полюса. Рубка снабжена всеми необходимыми инструментами: указателем скорости (эфиро-тахометром), указателем масс, станцией радио-телеграфа, подробной картой звездного неба.
Старт и посадка осуществляются на водной поверхности. По расчетам Улинского, при весе в 200 тонн и диаметре в 20 метров «мировой» корабль погружается в воду не более чем на 2,5 метра.
В том же 1920 году Франц Улинский взял патент на устройство еще одного межпланетного «электронно-ракетного» корабля. Этот корабль также окружал диск из термоэлементов, преобразующих солнечную энергию в электрический ток. Особенностью третьего корабля Улинского является наличие турбокомпрессора, работающего на реактивную установку с дюзой и обеспечивающего скоростной полет в атмосфере. Реактивная установка состоит из котла, к которому подведены две трубы: сверху — высокого давления, снизу — низкого давления. Турбокомпрессор поддерживает циркуляцию в этом контуре, восстанавливая давление по мере необходимости. В котле же происходит реакция, являющаяся движущей силой корабля, как и в случае с ракетами, с той лишь разницей, что благодаря замкнутости процесса не происходит потерь рабочего вещества — правильность этой идеи, как вы понимаете, целиком остается на совести автора.

Электронный корабль Улинского

«Мировой» корабль Улинского
Особый интерес представляет устройство «электро-эжекторов», которые Улинский планировал разместить на всех трех кораблях. Принцип действия этих аппаратов изобретатель описывает следующим образом.
Для приведения эжекторов в рабочее состояние необходимо напряжение в 250 000 вольт. Создаваемый термопарами постоянный ток преобразуется в переменный ток высокого напряжения при помощи газового центробежного прерывателя. Каждый из эжекторов состоит из трех частей. Катод вставлен в соленоид и сильно нагрет. Соленоид создает мощное электромагнитное поле. Когда между катодом и соленоидом возникает ток требуемого напряжения, то из раскаленного катода вылетают электроны, которые, двигаясь по силовым линиям анодного соленоида, достигают «главного» катода. Между этим последним и анодом проходит электроток, который гонит электроны из вольфрамовой спирали, наполненной амальгамой бария. Эти-то электроны и вылетают из эжектора, создавая тягу.
Улинский полагал, что для отрыва от Земли и подъема корабля третьего типа (его общий вес изобретатель оценил в 3 тонны) достаточно расхода 5 грамм вещества в секунду (в данном случае — ртутного препарата). Этот расход уменьшается по мере удаления от Земли.
Работы австрийца не остались без внимания. В 1926 году немецкий изобретатель Рокенфеллер опубликовал проект шарообразного ракетного корабля, по форме и устройству похожий на «мировой» корабль Улинского.
А еще через год в России вышел научно-фантастический роман «Через тысячу лет», в котором инженер В. Д. Никольский изложил ряд интересных предположений о перспективах научно-технического развития. В частности, Никольский описал, как в 3000 году земляне построили корабль, который перемещался в пространстве силой реакции извергающихся из него «продуктов распада атомов». Корабль был длиной около 30 метров, а формой напоминал рыбу с двумя толстыми и короткими крыльями по бокам. Кроме того, вдоль корпуса располагались овальные отверстия газовых эжекторов электронно-реактивного двигателя.
Переднюю часть корабля Никольского занимала кабина пилота с многочисленными автоматическими приборами: указателем скорости, наклона, направления и т. п. Далее шли четыре пассажирские каюты, уборная, ванна и помещение для багажа. Корабль мог развивать скорость до 10 км/с и выходить на орбиту Земли.
Другой вариант использования внутриатомной энергии предложил французский инженер Робер Эсно-Пельтри, опубликовавший в 1913 году статью о возможности полета на Луну. В качестве взрывчатого вещества, обеспечивающего движение кораблей в космическом пространстве, Эсно-Пельтри намечает радий.
Выкладки инженера были положены в основу романа французского фантаста Мираля-Виже «Огненное кольцо», в котором описывается экспедиция четырех ученых на Марс и Сатурн.
Автор романа сообщает читателям, что «1 грамм радия в течении часа развивает количество энергии, способное поднять этот вес на высоту 34 километров. Эта энергия — в несколько миллиардов лошадиных сил. 1 килограмм его содержит энергии в 5670 раз больше того, которое необходимо для полета на Луну. При полете ускорение движения предполагается равным 1,1 земного. Поэтому увеличение веса пассажиров будет незначительным».
Герои романа, инженеры Эсперэ и Генри Валсор, открывают способ получить из радиевых солей вещество в 60000 раз более активное, чем радий, названное ими «вириумом». Трех килограммов этого вещества достаточно, чтобы долететь с Земли до Сатурна и вернуться обратно. Так как распад вириума происходит медленно, то для ускорения процесса был изобретен способ «физической катализации»: пучок катодных лучей направлялся на вириум, и под их воздействием происходило бурное «разложение» последнего с выделением требуемой энергии.
Сама ракета Мираля-Виже имела овальную форму и была построена из никелевой стали. Общая высота ракеты — 14 метров, наибольший диаметр — 4 метра. Одна половина ее вдоль корпуса была зачернена, другая — отполирована до зеркального блеска. Подобная «раскраска», по мнению автора, необходима для того, чтобы регулировать температуру корпуса при полете в межпланетном пространстве, поворачивая ракету к Солнцу то черной стороной, то отполированной. Стенки ракеты состоят из четырех слоев, между ними — разреженный воздух, служащий теплоизолятором. Внизу корпуса закреплены четыре «ноги-буфера», смягчающие удар при посадке. Вход расположен между «ног» — там имеется круглый остекленный люк.
Внутри ракеты проходит вертикальная шахта диаметром 1 метр с лестницей; вокруг шахты располагаются помещения на 4 этажах. Первый (нижний) этаж занимает «камера сгорания», из которой по трем стальным трубам вырываются продукты разложения вириума. Над камерой закреплен свинцовый ящик с запасами этого фантастического вещества. Второй этаж отведен под пассажирскую каюту высотой в 4,5 метра и с четырьмя окнами. На третьем и четвертом этажах находится склад.
Для поворота ракеты вокруг ее продольной оси предусмотрены еще три выхлопные трубы, установленные под углом в 120° друг к другу.
Ракета стартует в вертикальном положении, разгоняясь с набором высоты. Полет до Луны проходил на скорости 60 км/с, до Марса — 800 км/с, до Сатурна — 1200 км/с.
Еще один проект космической ракеты на «атомной» тяге был предложен инженером Александром Федоровым, представившим модель и описание своего корабля на Выставке межпланетных аппаратов, проходившей в Москве в 1927 году.
Корабль Федорова должен был приводиться в движение электрохимической энергией, являвшейся результатом использования «внутриатомной энергии». Согласно сохранившимся чертежам, он имел обтекаемую форму с тремя пропеллерами, боковыми крыльями, главной и вспомогательными дюзами. При выходе за пределы земной атмосферы пропеллеры и крылья убирались. Общая длина ракеты — 60 метров, диаметр — 8 метров, вес с горючим — 80 тонн, максимальная развиваемая скорость — 25 км/с. Жилые помещения спроектированы в расчете на экипаж из шестерых человек.

Атомо-ракетный корабль Федорова
К сожалению, других подробностей о ракете Александра Федорова и о конструкции ее двигателей на выставке не сообщалось.
Если все вышеперечисленные идеи начала XX века в той или иной степени оказались востребованы в ходе дальнейшего прогресса в космической отрасли, то тема, которую мы затронем ниже, еще ждет своего воплощения.
Речь идет о возможности беспроволочной передачи энергии на большие расстояния, что позволило бы заметно снизить общий вес любого космического корабля и увеличить продолжительность его полета.
Первым эту идею применительно к проблеме межпланетных перелетов высказал популяризатор космонавтики Николай Алексеевич Рынин, опубликовавший в 20-е годы серию статей и книг, в которых были собраны, систематизированы и проанализированы практически все известные в то время проекты космических кораблей и технологий. (В скобках признаюсь, что настоящая глава во многом зиждется именно на работах Николая Алексеевича.) В книге-фантазии Рынина «В воздушном океане», изданной в 1924 году, описан проект вымышленного японского инженера Ямато, который якобы предложил организовать полет на Луну.
Ямато полагал, что Земля представляет собой громадный магнит, окруженный зонами «магнитной напряженности». Корабль Ямато должен по команде пилота заряжаться либо «положительным», либо «отрицательным» магнетизмом и в зависимости от этого или притягиваться к Земле, или отталкиваться от нее. Аппараты, создающие «магнетизм», находятся непосредственно на корабле, а вот энергия для них поставляется с Земли при помощи шести мощных земных «радиостанций», расположенных в Токио, Мельбурне, Лондоне, Капштадте, Денвере и Сант-Яго.

Радио-корабль Ямато (идея Н. Рынина)
Кроме прочего, Ямато подробно разработал принципы орбитальной навигации. Например, путем вращения плоскости индукции генераторов корабля он предполагал ориентироваться в пространстве, так как «зоны разных магнитных напряжений вокруг Земли долго сохраняют свое положение. Зная же угол наклона плоскости индукции к данной зоне, можно определить и положение корабля относительно Земли».
В 1926 году увидел свет роман-утопия Александра Ярославского «Аргонавты вселенной», в котором рассказывается об очередной экспедиции на Луну на реактивном корабле, движимом силой отдачи при «разложении радия». Вот как автор описывает главную часть лунного корабля — источник энергии:
«В маленькой металлической коробке, похожей на большой портсигар, очень тяжелой, сосредоточена страшная, неизмеримая сила: стоит нажать рычажок, и из коробки вытечет один атом освобожденного радия, которого будет более чем достаточно, чтобы взорвать большой город».
Наивность подобного утверждения сегодня очевидна, но не будем забывать, что до открытия цепной реакции урана и первых оценочных расчетов высвобождаемой при этом энергии, сделанных немецким физиком Отто Ганом, оставалось еще двенадцать лет, а романисты имели довольно смутное представление о свойствах радиоактивных материалов.
Корабль Ярославского, названный «Победителем», имел удлиненную форму с тупым носом и «реактивной трубой» на корме. Для спуска на Луну или на Землю в передней части корабля был предусмотрен второй реактивный «контр-двигатель».
Связь с Землей обеспечивалась посредством радиотелефона; для этой цели на одном из островов группы Самоа в Тихом океане, где строился «Победитель», были воздвигнуты девять радиобашен, из которых одна, центральная, достигала высоты 750 метров.
Автор также сообщает, что при помощи этих башен на корабль можно было пересылать «энергию». К сожалению, радий таким образом транспортировать нельзя, а потому межпланетным путешественникам, не озаботившимся о достаточном запасе радия на борту, пришлось буквально выклянчивать его бесценные крупицы у жителей Луны. Интересно, а что бы они делали, не окажись на Луне жителей?..
Еще более необычный (и самый невероятный!) принцип движения межпланетного корабля представлен в романе датского писателя Соруса Михаэлиса «Небесный корабль» (1921 год).
Датчанин на многих страницах довольно красочно описывает сон (или бред?), увиденный итальянским солдатом Эрколэ Сабенэ за несколько секунд до гибели от газовой атаки. В этом сне к нему приходит спасение в виде межпланетного корабля «Космополис», пролетавшего над окопами по дороге на Марс и случайно захватившего умирающего солдата якорем.
Корабль «Космополис» имел вид шара с целым рядом сфероидальных хрустальных окон, которые снаружи закрывались выдвижными стальными щитами. Внутри шар был разгорожен на каюты, проходы, залы и обсерватории, при этом многочисленные помещения сходились лучами в центре и могли вращаться во все стороны вокруг этого центра.
Вот как объясняет один из пассажиров корабля, австриец Крафт, принципы движения корабля своему спутнику Эрколэ:
«Всякое небесное тело обладает своим спектром. Спектральный анализ — это, так сказать, особый способ сигнализации каждого отдельного небесного тела. Мы с помощью радия получаем совершенно особый вид звездных спектров, более сильных и ярких, чем прежде; они точнейшим образом осведомляют нас об элементах каждого тела, о его весе, величине, плотности и космической силе. Вот такой радиоспектр Марса и является для нас одновременно двигательным и управляющим аппаратом. Он действует подобно присасывающему диску, излучающему ток по направлению к планете, к которой мы стремимся. Посредством усиления этого тока мы преодолеем силу земного притяжения… Чтобы оторваться от Земли, нужно только обладать скоростью 11,5 километров в секунду. А мы можем с помощью тока, образовавшегося между Марсом и его радиоспектром — тут, под нашими ногами — добиться гораздо большей скорости. Мы беспрерывно и беспрепятственно падаем сквозь эфир в мировое пространство, словно влекомые невидимою нитью через всю вселенную. С нашим радиоспектром и его током мы можем опуститься только на ту планету, к которой обращены наши ноги. Этот же радиоспектр управляет положением телескопа, который все время остается направленным на Марс».
Разумеется, романисты не могли довольствоваться гипотетической возможностью пересылать с Земли в космос только энергию и ничего, кроме энергии. Воображение звало выше и дальше. Сам собой напрашивался проект передачи по радио материальных тел — сегодня подобный фантастический способ перемещения в пространстве принято называть «телепортацией».
В сущности, эта идея является прямым развитием представлений оккультистов о полетах в астрале и прочих высших сферах, населенных духами, — с той лишь разницей, что медитацию и наркотики здесь заменил «точный научный расчет».
Среди произведений на тему передачи материальных тел на большие расстояния особое место занимает рассказ А. Горша «Экспресс-молния», опубликованный в журнале «Мир приключений» в 1928 году. Это, по-видимому, первый рассказ, где оккультная «практика» полностью исключена из сюжета. Читая его, мы точно знаем, что происходящее не приснилось персонажу, как в знаменитой повести Константина Циолковского «На Луне», и в кустах вместе с пресловутым роялем не сокрыт какой-нибудь «луч Барсума», как у Эдгара Берроуза в «Принцессе Марса». У забытого ныне автора все строго научно.
Вот как описывает А. Горша проведенный профессором Бобруйским эксперимент по пересылке подопытной собаки из Сухуми в Москву:
«На стенах комнаты висели распределительные щиты; на столе были расположены многочисленные радиоприборы.
Посредине находился стеклянный шкаф в рост высокого человека. Внутри шкафа только и были явственно заметны по бокам две никелированные ручки, так поставленные, что за них легко можно было схватиться руками, и на дне две подставки в форме ступней, очевидно, для ног. Невдалеке стоял ящик, раза в два меньше шкафа, также стеклянный, но с металлическим дном.
Профессор повернул несколько рукоятку, включил два рубильника. Вся комната озарилась ровным зеленым светом. Послышалось слабое гудение. Как будто гудел пчельник. Через несколько секунд в воздухе почувствовалось присутствие какого-то вещества. Сначала профессор посадил собаку в стеклянный ящик, прикрепил к нему провода и захлопнул рукоятки. Внутренность ящика озарилась слабым зеленым светом. Послышалось более резкое гудение. Одно мгновение — и собаки не стало.
— Поздравляем! — раздалось в громкоговорителе из Москвы вместе с лаем собаки. — Получили живым и невредимым!..»
Применительно к межпланетным подобный аппарат описан в повести Оскара Гоффмана «Путешествия Мак Мильфорда в мировом пространстве». При помощи «переменного тока высокого напряжения» тела разлагались на атомы и со скоростью света пересылались на выбранную планету. Там они группировались в прежние тела, органические или неорганические, живые или мертвые. Таким образом изобретатель Мильфорд переправил на Луну своего помощника и слугу.
И в наше время писатели используют в своих романах принцип, изложенный в «Экспресс-молнии». Под разными названиями («телепортация», «нуль-транспортировка», «джамп» и так далее) мы встречаем этот способ перемещения в пространстве во многих произведениях современной фантастики, и сегодня он воспринимается как обязательный элемент при описании транспорта будущего. Однако пока не существует даже теоретических предпосылок для создания аппарата типа «Экспресс-молнии», и он остается лишь красивой фантазией. Чего не скажешь, например, о ракетах…
Для того чтобы сделать открытие, вовсе не нужно глотать пыль архивов и корпеть над выписанными из-за границы справочниками. Бывает, что книги, стоящие на наших домашних полках, содержат в себе неисчислимое количество информации, нами когда-то читанной, воспринятой, переваренной, но затем успешно позабытой. Перелистывая их вновь, мы с огромным для себя удивлением обнаруживаем, что оставили без внимания некий потрясающий воображение факт, который и теперь способен перевернуть наше мировоззрение, а значит, совершаем таким образом маленькое, но очень важное для себя открытие.
Вот и я, разбирая старые годовые комплекты журналов «Техника — молодежи», вдруг наткнулся на небольшой очерк, в котором рассказывалось о предыстории ракетостроения, и был потрясен, когда выяснилось, что технологии, считавшиеся достижением исключительно второй половины XX века, успешно применялись задолго до того, как были описаны популярными фантастами. Как ни странно, в этой области реальность опередила мечту! И опередила с большим отрывом!
Вот лишь один пример из множества ему подобных. Общеизвестно, что первые ракеты применяли еще китайцы, используя их для устройства фейерверков и для поджогов крепостей противника. А что вы скажете о первом запуске ракет с подводной лодки? Когда, вы думаете, он состоялся?.. После Второй мировой войны?..
А вот и нет. Первый успешный запуск ракет с подводной лодки состоялся 29 августа 1834 года на реке Неве! И Александр Сергеевич Пушкин вполне мог наблюдать этот запуск, если бы кто-нибудь пустил взбалмошного и уличенного в нонконформизме поэта на секретные испытания перспективных видов вооружений.
Речь идет о металлической подводной лодке конструкции нашего соотечественника Карла Андреевича Шильдера. Этот совершенно фантастический по тем временам аппарат водоизмещением 16,4 тонны имел удлиненную обтекаемую форму, две наблюдательные башни (в одной из них располагался перископ) и систему восстановления воздушной среды, основным элементом которой являлся центробежный вентилятор. Лодка Шильдера с экипажем из 10 человек могла погружаться на глубину до 12 метров и производить залп пороховыми ракетами калибра 4 дюйма (102 миллиметра) из шести труб, расположенных на корпусе и способных изменять положение для создания необходимого угла возвышения. Лодка успешно прошла цикл испытаний, однако так и не была принята на вооружение: Комитет о подводных опытах дал негативную оценку проекту Шильдера, указав на главный его недостаток — была совершенно не продумана система подводной навигации.
Тем не менее на фоне русской чудо-субмарины, вооруженной ракетами, даже «Наутилус» капитана Немо (придуманный Жюлем Верном в 1869 году, то есть через 35 лет после испытаний лодки Шильдера) представляется неким анахронизмом: подводная лодка с носовым тараном — подумать только!
(Тут мне могут возразить, что «Наутилус» был лучше российского ракетоносца, поскольку использовал электроэнергию в качестве движущей силы, а Шильдер, мол, не придумал ничего лучшего, как посадить своих моряков-подводников за весла. Тут я отвечу, что Шильдер, не зная о «Наутилусе», которому еще только предстояло пуститься в «историческое» путешествие длиною 20000 лье, уже в 1841 году подумывал о замене мускульной силы гребцов на некое электромеханическое приспособление.)
Подводный ракетоносец Шильдера — далеко не единственное изобретение, обогнавшее свое время. Любой, кто всерьез занимается историей науки и техники, может с ходу перечислить десяток таких проектов: парашют и орнитоптер Леонардо да Винчи, персональный компьютер Чарльза Бэббиджа, металлический дирижабль Константина Циолковского и сферопланы Анатолия Уфимцева. Список можно продолжать и продолжать, забираясь в другие области познания, но вряд ли где-нибудь еще вы найдете такое количество гениальных озарений и перспективных идей, как в ракетостроении.
Однако история ракет — это часть истории космонавтики, а потому нам стоит вернуться на несколько тысячелетий назад и хотя бы в самых общих чертах проследить развитие идеи, открывшей человечеству дорогу к звездам. Вполне может оказаться, что на этом пути нас поджидает множество удивительнейших открытий…
Первую попытку полета при помощи ракет предпринял опять же китаец. Был это некий мандарин Ван Гу, живший аж за 3000 лет до Рождества Христова. Как-то раз он повелел изготовить особый летательный аппарат, который состоял из двух больших змеев с сиденьем, расположенным между ними. Под этим аппаратом закрепили 47 ракет. Их подожгли одновременно 47 слуг и тут… Родственники отчаянного мандарина были безутешны.
Впрочем, историк космонавтики Вилли Лей ставит под сомнение подлинность легенды о Ван Гу, указывая на то, что не существует первоисточника, откуда взята эта легенда, а изустное предание без соответствующей ссылки не может быть воспринято всерьез.
Сам Лей пишет, что наиболее древним из китайских источников, в котором говорится о ракетах, является хроника, известная востоковедам под названием «Тунлян Канму». В этой хронике рассказывается о первом применении ракет при осаде Пекина монголами в 1232 году нашей эры. Китайцы использовали тогда два вида оружия, которые доставили монголам очень много хлопот. Одним из них были бомбы («цинтяньлэй» — «гром, потрясающий небеса»), которые сбрасывались со стен города на войска противника. Другим оружием были так называемые «фэйхоз цяп»— «огненные стрелы». Лей выдвинул предположение, что именно эти «стрелы» и представляли собой ракеты на черном порохе, полученном из древесного угля и селитры.
У китайцев идею ракет переняли арабы. В 1280 году увидела свет «Книга о сражениях с участием кавалерии и военных машин», написанная Хасаном аль-Раммахом, «гениальным горбуном», которого современники любовно называли Недшмэддином, что означает «Светоч веры». В ней приводятся рецепты производства пороха и даются инструкции по изготовлению ракет, которые автор называет «китайскими стрелами». Там же Хасан говорит о новом виде оружия — «ракетной торпеде», состоящей из двух плоских противней, наполненных порохом или другой зажигательной смесью. «Торпеда» была снабжена подобием стабилизатора, обеспечивавшего ей движение по прямой линии, которое осуществлялось с помощью двух больших ракет-двигателей. Все устройство называлось «самодвижущимся горящим яйцом», но о его применении ничего в тексте не сказано.

«Самодвижущееся горящее яйцо» Хассана аль-Раммаха
Примерно в то же время и в Европе появились первые труды о порохе и ракетах, называемых «ignis volans» («летающий огонь»).
Изобретение пороха здесь приписывали как англичанину Фрэнсису Бэкону, так и немецкому монаху Бертольду Шварцу, однако, скорее всего, этот секрет стал всеобщим достоянием почти единовременно на всей территории Европы,
Немецкий алхимик Альберт Магнус в своей книге «О чудесах мира», написанной между 1250 и 1280 годами, уже без всяких околичностей советовал для получения порохового заряда брать фунт серы, 2 фунта древесного угля и б фунтов селитры. Этот рецепт он скопировал из другой книги, которая носила название «Liber Ignium» («Огневая книга») и была написана несколько раньше неким Марком Греком, который, скорее всего, пользовался арабским источником.
То, что появление ракет было не просто литературным вымыслом, доказывается случайными ссылками на сам предмет. Так, замечание о ракетах содержится в «Кельнской хронике» 1258 года. А итальянский историк Муратори, который, собственно, и назвал ракету «ракетой», приписывает этому «новому» оружию важную роль в сражении при Кьодже в 1379 году.
В то время уже существовало огнестрельное оружие, но оно еще было весьма несовершенным, и ракеты могли составить ему серьезную конкуренцию. Немецкий военный инженер Конрад Эйхштедт в своей книге «Военная фортификация», изданной в 1405 году, говорит о трех типах применяемых ракет: вертикально взлетающих, плавающих и запускаемых при помощи тугого лука.
«Книга о военных принадлежностях» итальянского военного инженера де Фонтаны, появившаяся примерно в 1420 году, полна еще более смелых предложений. Этот труд содержит чертежи ракет в виде летающих голубей, плавающих рыб и бегущих зайцев, предназначенных автором для поджога укреплений противника. Например, ракета «Бегущий заяц» должна была устанавливаться на деревянной доске и передвигаться не на колесах, а на деревянных роликах: де Фонтана искал устройство, которое позволило бы замаскированной ракете преодолеть неровную местность. Кроме того, де Фонтана разработал конструкцию «ракетной машины» для пробивания брешей в стенах или в воротах крепостей и сделал набросок деревянной «ракетной торпеды», напоминавшей своей формой и раскраской голову морского чудовища.
Дальнейшие опыты с пороховыми ракетами привели к появлению весьма оригинальных проектов. Так, в неопубликованном манускрипте Рейнгарта фон Зольмса, относящемся к началу XVI века, описываются ракеты с парашютами. А граф Нассау предложил ракету, которая могла нырять и взрываться под водой.

«Ракетные торпеды» де Фонтаны
Спустя некоторое время архитектор Иосиф Фуртенбах из Ульма написал две интересные книги о применении ракет в военно-морском деле. Как утверждал Фуртенбах, ракеты могли использоваться на море не только для сигнализации, но и в качестве зажигательного средства, рассчитанного на поджог просмоленного такелажа кораблей противника. Фуртенбах отмечал, что пираты уже пользуются этим средством, и предлагал применять его для борьбы с пиратами.
В России черный дымный порох появился, по свидетельствам летописей, в XIV веке. Первые сведения об использовании ракет в качестве оружия на Украине относятся к XVI столетию. Как рассказывает историк Конисский в своей книге «История русов» (1847 год), в 1515 году в битве запорожцев с татарами «гетман Ружинский выслал отряд конницы с приготовленными завременно бумажными ракетами, кои, будучи брошены на землю, могли перескакивать с места на место, делая до шести выстрелов каждая. Конница оная, наскакав на становище татарское, бросила их между лошадей татарских, причинив в них великую сумятицу».
Первым отечественным печатным трудом по ракетной технике, по-видимому, является книга О. Михайлова «Устав ратных, пушечных и других дел, касающихся до воинской науки». Она выдержала два издания — в 1607 и 1621 годах.
«Зелейным делом» занимался и сам царь Петр I, учредивший в Москве специальное «ракетное заведение». В 1707 году в нем была изготовлена сигнальная ракета, способная подниматься на высоту до одного километра. Определенный интерес Петра к ракетному делу подтверждается заказом на перевод книги Иосифа Ландгрини «Художества огненные и разные воинские орудия», где приводились сведения об искусстве изготовления ракет.
Однако в Европе к этому моменту ракеты уже вышли из употребления в сухопутных войсках, о чем свидетельствует в своей книге Леонгарт Фроншпергер, главный оружейник города Франкфурта-на-Майне (1557 год). Посвятив большую часть страниц любимым пушкам, Фроншпергер все же отдает дань уважения и ракетам, которые он называет «рогетами». Оружейник писал, что «рогет» — это простейший фейерверк, изготавливаемый из пороха (смесь селитры, серы и древесного угля), плотно запрессованного в бумагу. «Рогет» должен высоко взлетать в воздух, давать красивый огонь, полностью сгорать в воздухе и исчезать без вреда. Запас энергии у «рогета» невелик, и работает он недолго, но из него можно сделать много прекрасных фейерверков, если соединить их по несколько штук в «шары» и «колеса» или запустить из мортир. «Рогеты» могут служить и двигателями для других фейерверков, ибо они поднимаются в воздух «за счет собственного огня, без стрельбы».
В 1591 году некий Иоганн Шмидлап опубликовал книгу, посвященную исключительно устройству невоенных фейерверков, где рассказал обо всем этом весьма подробно. Сырьем для изготовления ракеты был «ленивый» артиллерийский порох, то есть такой порох, скорость горения которого уменьшалась за счет добавления дополнительного количества древесного угля. Прежде всего необходимо было склеить бумажную (картонную) пороховую трубку. Затем, пока склеиваемая масса была еще влажной, в трубке делалась «горловина». После этого в том месте, где сходились вместе два закругленных деревянных цилиндра, на влажную трубку накидывалась намыленная бечева, затягивая которую можно было уменьшить трубку до двух третей полного диаметра. Когда все это было сделано, трубка хорошенько высушивалась. Высохшая трубка наполнялась порохом, который плотно набивался внутрь, слой за слоем, до самого верха. Суженный конец трубы образовывал нижнюю часть ракеты, а запал вводился внутрь через «горловину» (сопло). Готовая ракета, как описывает Шмидлап, привязывалась к шесту, который должен быть приблизительно в семь раз длиннее самой ракеты.

Боевые ракеты середины XIX века; 1 — русская (1849 год); 2 — прусская (1850 год); 3 — французская (1857 год); 4 — русская (1859–1863 годы).
Среди разработок Шмидлапа можно найти и первые составные, или, как их теперь называют, «многоступенчатые» ракеты. На одном из его рисунков изображена большая ракета, несущая небольшую другую, в передней части которой находится еще меньшая ракета.
Тем не менее на достаточно продолжительный период времени ракеты были позабыты и интерес к ним возродился лишь после не слишком удачной для англичан военной операции в далекой Индии.
В изданном после ее окончания «Обзоре военных действий на Коромандельском побережье» (1789 год) приводятся рассказы очевидцев о применении индусами ракет против английских войск. При этом утверждалось, что ракеты индусов весьма походили на те, которые применялись в Англии для фейерверков, но имели заметно большие размеры. Реактивный заряд помещался у них не в картонном корпусе, а в железной трубе, и весили они от 2,7 до 5,4 килограмма. Наводка осуществлялась при помощи трехметровой бамбуковой жерди, а дальность полета этих ракет составляла от 1,5 до 2,5 километра. Хотя наведение ракет и не было очень точным, однако массированное их применение позволяло нанести противнику, и особенно его кавалерии, большой урон.
Ракетными войсками индусов руководил Хайдар Али, принц Майсура. Первоначально ракетные части насчитывали всего лишь 1200 человек, но, когда была доказана эффективность нового оружия, Типпу-сахиб, сын Хайдара, увеличил численность ракетных частей до 5000 человек. Потери англичан от этих ракет были особенно велики в сражениях при Серингапатаме, состоявшихся в 1792 и 1799 годах.
Столь успешное применение ракет в боевой обстановке произвело сильное впечатление на английского полковника Вильяма Конгрева. И хотя он никогда и не видел их в действии, рассказов ветеранов для этого энтузиаста ракетостроения оказалось более чем достаточно.
Начиная с 1801 года Конгрев скупал самые большие ракеты, которые мог достать в Лондоне, платя за них из собственного кармана, и начал опыты, целью которых было установить максимальную дальность полета ракет. Он выяснил, что она не превышает 550 метров, то есть уступает в этом отношении индийским военным ракетам почти в три раза. Тогда он обратился к начальству с просьбой о поддержке. Лорд Чатам, изучив вопрос, дал разрешение использовать принадлежавшие военному министерству испытательные полигоны, и вскоре Конгрев добился увеличения дальности полета ракет до 1800 метров. А уже в 1805 году новое оружие было продемонстрировано принцу-регенту, и Конгрев со своими ракетами принял участие в экспедиции Сиднея Смита, руководившего штурмом Булони с моря.
Эта экспедиция ознаменовала начало первой «ракетной» войны в Европе. В 1806 году ракетами сожжена Булонь. В 1807 году в результате массированного применения около 25 тысяч ракет сгорела дотла большая часть Копенгагена.
Английские ракетчики особенно отличились в исторической битве под Лейпцигом (16–19 октября 1813 года), окончательно сломившей сопротивление армии Наполеона, и при осаде Гданьска (20 октября 1813 года).
Вильям Конгрев начал с применения зажигательных ракет калибром 3,5 дюйма (87 миллиметров). Корпус этих ракет, длиной чуть более метра, изготавливался из толстого листового железа; пятиметровый направляющий стержень крепился к корпусу посредством медного кольца. Ракета удерживалась на месте двумя железными кольцами меньшего размера, припаянными к корпусу.
В ракетах Конгрева использовались все типы применявшихся тогда артиллерийских боеприпасов, кроме литого круглого ядра. Изобретатель твердо верил в то, что через несколько десятков лет ракеты заменят всю артиллерию, за исключением корабельной.
И действительно, по дальности стрельбы его изделия превосходили все легкие артиллерийские орудия того времени. Что же касается точности попадания, которая сегодня представляется нам весьма низкой, то она почти не отличалась от точности, доступной тогдашней артиллерии.
Влияние Конгрева на развитие ракет было велико. Дания, Египет, Франция, Италия, Нидерланды, Польша, Пруссия, Сардиния, Испания и Швеция создали в составе своей артиллерии ракетные батареи.
Не отставала в ракетных разработках и Россия. Еще до Петра Великого, в 1680 году, в Москве, Киеве и Новгороде возникли мануфактуры по производству «диковинного оружия». А сравнимые с английскими ракеты появились в 1814 году. Ракеты конструкции офицеров Алексея Засядько и Ивана Картамазова имели калибр 102 миллиметра и поражали противника на расстоянии до 3 километров! Не их ли собирался использовать Карл Андреевич Шильдер в качестве главного оружия чудо-субмарины, о которой мы говорили в самом начале этого раздела?..
Деятельность других европейских армий в области ракетостроения в ту пору сводилась к тому, чтобы, во-первых, узнать все возможное о ракетах Конгрева и получить образцы этих ракет; во-вторых, скопировать английские достижения и, в-третьих, каким-либо образом усовершенствовать эти ракеты.
Например, голландская армия начала с того, что закупила большое количество ракет Конгрева. Но, когда дело дошло до запуска, ракеты, пролежавшие целый год на складе, оказались негодными. Поэтому решено было продолжить опыты с голландскими ракетами, которые не имели направляющего стержня. Капитан де Бур предложил стабилизировать ракету в полете тремя металлическими лопастями, вес которых был значительно меньше веса направляющего стержня. Но, по-видимому, голландцы не были удовлетворены этой ракетой, так как через два года снова заказали в Англии партию ракет Конгрева. Проведя новые эксперименты, голландцы решили ввести ракеты на вооружение только колониальных войск. Это дало им возможность выиграть в 1825 году сражение против 6000 туземцев на Целебесе.
Во Франции артиллерийские эксперты долго сомневались в эффективности ракет. Французский «Справочник офицера артиллерии» за 1819 год полагал, что военные ракеты были «воображаемым оружием». Но в это же время один артиллерийский офицер перевел книгу Конгрева, и специальная комиссия по ракетным исследованиям, заинтересовавшись ею, начала экспериментальные работы в районе Меца. В результате французы создали собственные типы ракет весом около 18 килограммов.
Следующим этапом в военном ракетостроении должно было стать появление ракет без направляющих стержней. И такую ракету вскоре предложил изобретатель Вильям Гейл. Он первым догадался стабилизировать ракету путем ее вращения. Гейл установил в сопле три металлические лопатки, имевшие небольшой наклон, чтобы истекающие газы сами заставляли ракету вращаться вокруг продольной оси.
Однако к тому времени, когда появилось это изобретение, большинство ракетных частей уже было расформировано. Артиллерия не стояла на месте, увеличивалась дальнобойность и точность стрельбы, и военные вновь охладели к «странному» оружию.
Ракеты Гейла все же были введены на вооружение армии США. «Военный словарь» Скотта, изданный в 1861 году, утверждал, что «в армии США используются ракеты Гейла двух типов: с диаметром корпуса 5,7 см (вес 2,7 кг) и с диаметром корпуса 8,2 см (вес 7,2 кг). При угле возвышения в 4–5° дальность полета этих ракет составляет 450–550 м, а при угле в 47° дальность действия ракеты первого типа превышает 1500 м; дальность полета ракеты второго типа колеблется в пределах 2000 м. Обычно боевые ракеты запускаются из труб или желобов, устанавливаемых на переносных стендах или легких повозках».
Последнее сообщение о боевом использовании ракет в XIX веке относится к России. Оно имело место во время затянувшейся Туркестанской войны. Доклады полковника Серебренникова, участвовавшего в той кампании, содержат много высказываний о «ракетных установках», но дают о них весьма незначительную информацию. В «Технической энциклопедии», опубликованной в 1897 году, например, сказано, что эти ракеты имели диаметр около 50 миллиметров и весили примерно 4 килограмма. Эти «ракетные установки» напоминали треноги топографов, только на месте прибора находилась пусковая труба. Первое упоминание о применении ракет в Туркестанской войне относится к 1864 году, а последнее — к сражению при Геок-Тепе, которое произошло 12 января 1881 года.
Впрочем, говорить о том, что с появлением дальнобойных пушек в ракетостроении наступил «застой», не приходится. Просто на какое-то время ракеты стали делом энтузиастов — чудаков-изобретателей, которые всегда видели гораздо дальше и больше, нежели самые образованные офицеры генеральных штабов и министерств обороны.
Аэропланы с ракетными двигателями
Так же как и в описанной выше ситуации с аэростатами, инициативные конструкторы примеряли принцип реактивного движения к самым разнообразным проектам летательных аппаратов, коих к концу XX века имелось уже в изобилии. Не обошли вниманием и аэроплан.
Разумеется, никто в те времена не предполагал использовать аэропланы для полетов в космическое пространство, однако сама идея впоследствии побудила того же Циолковского к анализу проблемы, что и позволило появиться на свет целой серии ракетопланов, первоначально нацеленных в мезосферу и еще выше — в космос.
Собственно, авторство первого известного проекта крылатого летательного аппарата с реактивным двигателем принадлежит французскому изобретателю Жерару, который в своей книге «Очерк искусственного полета в воздухе» (1784 год) предложил построить орнитоптер с громадными крыльями, приводимый в движение пороховыми ракетами. Спереди орнитоптера размещался вертикальный руль, а сзади — горизонтальный.
В 1837 году в Германии был опубликован проект реактивного самолета, авторство которого долгое время приписывалось нюренбергскому механику Ребенштейну. На самом же деле под этим псевдонимом выступал немецкий электротехник Вернер фон Сименс, впоследствии основавший известную фирму «Siemens». В качестве источника движущей силы для изобретенного им аэроплана Сименс предлагал использовать или реактивное действие водяных паров, или сжатого углекислого газа.
Через тридцать лет, в 1867 году, англичане Бутлер и Эдвардс взяли патент на проект реактивного аэроплана, форма которого походила на стрелу. Двигатель предполагался паровой, что, с учетом реалий того времени, вполне обоснованно.

Реактивный орнитоптер Жерара

Реактивный аэроплан фон Сименса

Реактивный аэроплан Бутлера-Эдвардса
В том же году некто капитан Николай Телешев взял во Франции патент на проект реактивного самолета. Судя по описанию, содержащемуся в патентной заявке, самолет Телешева представлял собой реактивный летательный аппарат тяжелее воздуха и приводился в движение за счет отдачи газов, образующихся при взрыве смеси в полом цилиндре, который служил камерой сгорания. В качестве горючего использовалась неназванная взрывчатая смесь, в качестве окислителя — атмосферный кислород.
Еще через двадцать лет в Киеве вышла в свет брошюра инженера Федора Гешвенда «Общее основание устройства воздухоплавательного парохода (паролета)», в которой автор развивал идею применения реактивной работы пара в транспорте. В брошюре был приведен чертеж аэроплана в трех проекциях и расчет. На основании этих расчетов Геш-венд получил следующие технические характеристики «паролета»: скорость при взлете — 1010 км/ч, подъемная сила — 1,33 тонны, расход пара — 213 кг/ч. Перелет из Киева в Петербург с пятью промежуточными посадками по 10 минут должен совершаться за 6 часов. При наличии конденсатора расход воды можно снизить до 107 кг/ч. Запас топлива (керосин) на один час полета составляет 16,4 килограмма. В аппарате помещаются 3 пассажира и 1 машинист. Для управления служат руль и поворотная воронка пароструйного аппарата. Двигатель — реактивный паровой, причем пар, покидая котел по системе труб, подается в ряд инжекторных сопел и, увлекая за собой большую массу воздуха, вырывается из последней — седьмой воронки. Вес аппарата с запасом воды и топлива — 1,14 тонны. Стоимость — 1400 рублей.
Как видите, несмотря на определенное предубеждение, существовавшее в XIX веке по отношению к летательным аппаратам тяжелее воздуха, проекты аэропланов на реактивной тяге появлялись достаточно регулярно. Однако идея настоящего ракетоплана стала обсуждаться несколько позже — уже после того, как в 1903 году американцы Орвилл и Уилбер Райт совершили первый полет на своем биплане с четырехцилиндровым бензиновым двигателем.
В 1908 году французский изобретатель Рене Лорэн опубликовал в авиационном журнале «Аэрофил» несколько статей о проекте реактивного самолета, приводящегося в движение однорядным шестицилиндровым двигателем внутреннего сгорания.
Гондола этого аппарата весом около 100 килограммов имела цилиндрическую форму и опиралась на землю лыжами. Два двигателя размещались под крыльями. Пилот должен был сидеть сзади и управлять как работой моторов, так и поворотами их вокруг горизонтальной оси, с помощью чего достигалась стабилизация аппарата. При взлете оси раструбов моторов располагались почти вертикально и по мере разбега угол их наклона уменьшается.
Свой реактивный двигатель Лорэн предлагал сделать настолько плоским, чтобы он помещался в крыле самолета.
Каждый цилиндр поршневого двигателя должен был иметь выхлопное сопло. Предполагалось, что самолет будет приводиться в движение серией последовательных выхлопов.
В 1910 году Рене Лорэн предложил новый проект — воздушную торпеду, представляющую собой аппарат с реактивным двигателем и управляемый посредством телемеханики. Согласно расчетам Лорэна, скорость полета торпеды должна была составить около 200 км/ч.
Еще через год французский изобретатель представил новый вариант реактивного металлического аэроплана, разгон которого по земле производился при помощи электрической тележки, катящейся по рельсам. Когда при движении по земле аппарат достигнет определенной скорости, начинает действовать реактивный двигатель и аэроплан взлетает.
Выхлопные трубы (дюзы) двигателя были устроены так же, как и в предыдущем проекте. Пилот опять же помещался почти у кормы аппарата в особой камере, которая могла скользить внутри трубчатого фюзеляжа аэроплана по особым направляющим.
Взлет производился следующим образом. На протяжении первого километра электрическая тележка увлекает аэроплан по рельсовому пути, доводя его скорость до 300 км/ч. В конце пути устроен своеобразный трамплин — дорога поднимается в вертикальной плоскости по кривой с начальным радиусом в 1200 метров. Здесь благодаря центробежной и подъемной силам, приданной скорости и работе собственного реактивного двигателя аэроплан отделяется от тележки и далее летит самостоятельно. Тележка же катится по рельсам дальше и тормозится.
Спуск аппарата производится еще более необычным способом В специально отведенном для этого месте свален мягкий грунт. Аэроплан, спускаясь по наклонной линии (глиссаде), носом врезается в него, уходя на глубину до 2 метров. Для уменьшения скорости «спуска» пилот тормозит движение специальным воздушным тормозом, состоящим из ряда алюминиевых тарелок и выдвигаемым им с кормы аппарата
Вдохновленный идеями Лорэна российский инженер Александр Горохов выдвинул свой проект реактивного летательного аппарата. В статье «Механический полет будущего» (1911 год) он описал управляемую крылатую ракету на трех пассажиров, движимую реакцией газов, получаемых в результате горения жидкого топлива (бензин, спирт, керосин) в воздухе, забираемом из внешней атмосферы. Корпус аппарата имел обтекаемую форму с хвостовым оперением, играющим роль рулей высоты и направления. Двигатель ракетоплана Горохова состоял из двух симметрично расположенных камер сгорания, в которые двумя компрессорами нагнетается воздух, а специальным насосом — топливо.
Скорость аппарата должна была составить более 350 км/ч. Схема взлета и посадки в точности воспроизводили схему, предложенную Лорэном для «аэроплана с катапультой».
Во всех проектах Лорэна (и, соответственно, в проекте Горохова) фигурирует реактивный двигатель, использующий энергию быстрой струи выхлопных газов. Однако Лорэн не понимал, почему этот двигатель уступает поршневому двигателю с винтом, создающим «струю» с большой массой, но малой скоростью. Только спустя несколько лет инженеры начали осознавать глубокую разницу между скоростью истечения газов и скоростью самолета.
Имелось два способа сокращения этой разницы: увеличение скорости самолета и снижение скорости истечения газов. Оба способа, примененные одновременно, привели бы к полному устранению разницы.
В 1917 году француз Мориз представил проект двигательной установки для самолетов, которая, как предполагалось, позволяла соединить планер с реактивным двигателем. С помощью компрессора, топливных форсунок и камеры сгорания с выхлопным соплом Мориз сумел получить реактивную струю. Дополнением к его двигателю являлась форсажная камера — устройство, замедляющее скорость реактивной струи, но увеличивающее ее массу. Однако осуществить свою идею на практике Мориз не сумел. Три года спустя это сделал за него его соотечественник инженер Мело.
Мело отказался от большей части оборудования Мориза, а вместо этого взял два цилиндра и соединил их открытыми концами друг с другом. На каждом конце этой двухцилиндровой сборки имелись отверстия для подачи топлива и запальные свечи. Внутри помещался свободный поршень без шатуна, двигавшийся взад и вперед для создания компрессии. Выхлоп осуществлялся через отводные трубки в общую «буферную камеру», к которой крепилось реактивное сопло. В результате создавалась пульсирующая реактивная струя, которая затем также пропускалась через форсажную камеру.
Мело не только описал свой проект, но и построил действующий двигатель. Правда, его было трудно запускать, но работал он исправно. После того как были накоплены опытные данные, Мело рассчитал, что двух больших двигателей такого рода достаточно, чтобы поднять обычный для того времени самолет.
Вплоть до Мело история создания ракетопланов шла общим путем: от изобретателя к изобретателю, от проекта к проекту. Но в дальнейшем это развитие пошло разными дорогами из-за стремления изобретателей как-то повысить коэффициент полезного действия новых двигателей. Одни пытались достичь этого за счет максимального увеличения скорости, рассматривая ракету как самостоятельное средство передвижения, другие брали за основу любую приемлемую скорость и, подобно Мело, стремились приспособить ракету к самолету, а не наоборот. Последний путь и привел к тому, что сейчас называют аэрокосмическими системами многоразового использования.
В самом начале XIX века в Париже жил мастеровой Клод Руджиери, итальянец по происхождению. В это время стали очень модными рассказы о запусках воздушных шаров и боевых ракетах Конгрева. Руджиери неплохо зарабатывал тем, что организовывал публичные зрелища, в которых мелкие животные — вроде мышей и крыс — поднимались в небо на пороховых ракетах и возвращались на землю живыми и здоровыми при помощи маленьких парашютов. Размеры и мощность ракет Клода Руджиери все увеличивались, и в один прекрасный день — это было в 1830 году — предприимчивый ремесленник объявил, что «большая комбинированная ракета поднимет в небо барана». Тут же появился некий юноша, который предложил себя вместо несчастного животного. И Руджиери, недолго думая, принял это предложение! Вполне возможно, что юный смельчак кончил бы тем же, чем и китайский мандарин Ван Гу, но тут в дело вмешалась полиция, запретившая необычное представление под страхом ареста талантливого мастерового.
Так, Франция стала первой страной в мире, где осуществлялись запуски «геофизических» ракет с подопытными животными. Оставалось сделать всего один шаг…
Мы помним, что уже к середине XIX века многие энтузиасты научно-технического прогресса заговорили о возможности использования реактивной тяги для нужд пассажирского и грузового транспорта. Разумеется, не обошли эту тему и литераторы. Большая часть из них, как мы увидели, полагала, что будущее за комбинированными реактивно-аэростатическими системами, — это было время паровых двигателей, а о ракетах на жидком топливе никто не мог даже мечтать. Например, Жюль Верн не рискнул описать космический полет на ракете, полагая, что для достижения Луны заряда ракеты недостаточно — куда проще и «эффективнее» запустить этот снаряд из пушки. Однако и он в романе «Вокруг Луны» (1870 год) приводит эпизод с применением тормозных ракет, которые первоначально планировалось использовать для мягкой посадки на Луну, но затем нужда заставила путешественников запустить эти ракеты для коррекции курса с целью возвращения на Землю.
Обратимся к тексту романа:
«…мощные ракеты, имея точкой опоры дно снаряда и вылетая наружу, должны были вызвать обратное действие снаряда и тем самым до некоторой степени замедлить скорость его падения. Правда, этим ракетам пришлось бы гореть в безвоздушном пространстве, но кислорода им хватило бы, потому что он заключался в самих ракетах. Ведь извержению лунных вулканов никогда не препятствовал недостаток атмосферы вокруг Луны.
Барбикен перед отъездом запасся ракетами в маленьких стальных цилиндрах с нарезкой, которые ввинчивались в дно снаряда. Изнутри они были заделаны в уровень с дном, а снаружи выступали на полфута. Их было двадцать штук. Специальное отверстие, проделанное в диске, позволяло зажечь фитили, которыми были снабжены ракеты. Самые взрывы ракет должны были произойти за пределами снаряда. Взрывчатая смесь была заблаговременно заложена в каждый цилиндр. Оставалось только вовремя вынуть металлические пробки, вставленные в дно снаряда, и вместо них ввинтить цилиндры с ракетами, плотно пригнанные к отверстиям. <…>
Ардан поднес зажженный фитиль к запальному шнуру, к которому были присоединены все ракеты. Из-за отсутствия воздуха детонации не последовало, но Барбикен увидел в окно пламя взрыва, которое очень скоро погасло.
Снаряд содрогнулся, и путешественников изрядно встряхнуло.
Трое друзей, безмолвные, еле переводя дыхание, напрягали все свое зрение, весь слух. Среди полной тишины казалось, что слышно, как бьются их сердца».
Разумеется, в реальности пороховые ракеты не сработали бы (объяснения Верна выглядят просто смехотворными), но само понимание серьезности проблемы (без окислителя не может быть горения, а значит, и реактивной тяги) создало известную почву для поиска решения.
С разницей в год на свет появились два человека, которым судьбой предначертано было стать предтечами космической эры для всего человечества. Звали их Герман Гансвиндт и Константин Циолковский.
О жизни и проектах Циолковского мы поговорим более подробно ниже (см. главу 3), а сейчас остановимся на Германе Гансвиндте, которого, на мой взгляд, совершенно незаслуженно забывают, когда речь заходит о пионерах ракетостроения.
Гансвиндт родился 12 июня 1856 года в небольшом городе в Восточной Пруссии. Он получил образование юриста, но предпочел полностью отдаться своему главному увлечению — конструированию различных средств передвижения. Он изобретал велосипеды, самодвижущиеся экипажи, моторные лодки и пожарные машины. Некоторые из его проектов остались на бумаге, но многие были осуществлены им самим.
Со временем Гансвиндт обратился к проблеме воздушного транспорта и начал (как и Циолковский) с дирижабля. Он разработал и запатентовал проект оригинального воздушною корабля длиной 150 метров и с паровым двигателем мощностью в 100 лошадиных сил. Уже тогда было понятно, что дирижабли незаменимы в военном деле, и в связи с этим Гансвиндт направил описание своего изобретения с приложением копий патента фельдмаршалу фон Мольтке. Ответ пришел очень быстро: Генеральный штаб «за неимением средств» отказывал Гансвиндту в осуществлении его проекта.
Параллельно Гансвиндт сконструировал и построил геликоптер, но не смог подобрать к нему двигатель нужной мощности.
Однако славу изобретателю принес совсем другой проект — космического корабля, использующего реактивный принцип движения.
28 мая 1893 года в берлинской газете «Berliner Local Anzeiger» появился отчет о докладе, сделанном за день до этого в «Филармонии» изобретателем Германом Гансвиндтом о проекте своего корабля для межпланетных путешествий — например, на Марс или Венеру, а также для полета на земные полюсы. По данным газеты, корабль должен быть устроен следующим образом:
«Главную часть его составляет стальной цилиндр, к которому присоединены стальные трубы, заключающие сжатый воздух, необходимый для дыхания. В теплом отделении цилиндра помещаются пассажиры. Двигатель предполагается реактивный. Полет в мировом пространстве должен совершаться быстрее движения небесных тел».
Больше в газете никаких подробностей приведено не было. Но зато имелась восторженная врезка: «Легендарный Икар не умер; он воскресает в разные века под разными именами, и в наше время он возродился под именем Германа Гансвиндта, который, как и его предок, стремится оторваться от земли…»
Лишь шесть лет спустя, в 1899 году, сам «немецкий Икар» опубликует книгу, в которой приведет рисунок аппарата и даст некоторые дополнительные сведения о нем. Из этого описания следует, что космический корабль Гансвиндта состоял из двух массивных цилиндров: верхнего «взрывного» и нижней гондолы на двух пассажиров. Гондола имела сквозное отверстие, через которые должны были проходить истекающие из верхнего цилиндра газы. Под гондолой располагались «еще цилиндры с трубами, наполненными сжатым воздухом, поступающим по мере надобности в пассажирское помещение».

Космический корабль Гансвиндта
Хотя Гансвиндт интуитивно и постиг принцип реактивного движения, он так и не смог осознать его физический смысл. Он утверждал, что пиротехнические ракеты движутся в основном за счет «отталкивания от воздуха», поскольку «один лишь газ не в состоянии создать достаточную реактивную силу».
Для того чтобы получить ощутимую реактивную силу, писал Гансвиндт, необходимо отталкивание двух твердых тел весом по крайней мере в 1–1,5 килограмма каждое. В связи с таким предположением его «топливо» представляло собой тяжелые стальные гильзы, начиненные динамитом. Эти гильзы должны были подаваться в стальную взрывную камеру, имеющую форму колокола. Одна половина гильзы выбрасывается взрывом заряда, другая половина ударяет в верхнюю часть взрывной камеры и, передав последней свою кинетическую энергию, выпадает из нее. Камера была жестко связана с двумя цилиндрическими «топливными барабанами», расположенными по обе стороны от нее.
По достижении высокой скорости Гансвиндт считал возможным прекратить подачу гильз во взрывную камеру. Он знал, что после этого пассажиры испытают ощущение невесомости, с чем он намеревался бороться путем приведения гондолы во вращение вокруг центрального отверстия, чтобы таким образом заменить силу тяжести центробежной силой; при этом оба конца кабины становились полом.
С критикой проекта выступил венский профессор Роман Гостковский. В своей статье, озаглавленной не без ехидства — «Новый Икар», он указывает на просчеты, сделанные изобретателем, однако и сам допускает ряд ошибок. Та давняя статья примечательна еще и тем, что в ней Гостковский упоминает, будто бы Гансвиндт обращался с проектом космического корабля к русскому и германскому императорам и при этом утверждал, что его корабль способен долететь с Земли до Марса или Венеры за 22 часа (?!).
Позднее и сам Герман Гансвиндт понял, что его проект в изначальном виде нежизнеспособен. В своих письмах к Николаю Рынину (1926 год) он предложил новый вариант космического корабля: теперь аппарат должен был подниматься в верхние слои атмосферы не силой реакции, а при помощи аэроплана; при спуске же предполагался планирующий полет без расхода энергии. Таким образом, Герман Гансвиндт стал одним из тех, кто еще в 20-е годы предложил комбинированную аэрокосмическую систему, преимущества которой перед другими мы начинаем постигать только сейчас.
Работы Гансвиндта и Циолковского, а также их последователей — Фридриха Цандера, Германа Оберта и Макса Валье — открыли для популяризаторов идеи межпланетных путешествий новую (или хорошо забытую старую) тему — ракеты.
Романы, в которых космические ракеты различных типов выступали в качестве таких же равноправных персонажей, как и сами межпланетные путешественники, посыпались, будто из рога изобилия.
В 1917 году американский ежемесячный журнал «Космополитен» опубликовал фантастический роман «Вторая Луна», в написании которого участвовали два автора: профессор физики Роберт Вуд и беллетрист Артур Трэн.
В этом романе описывается полет из Вашингтона в космическое пространство четырех человек — профессора Хукера, инженера Пикса Эттербери, авиатора Борка и профессора математики Роды Джибс. Целью путешественников было взорвать громадный астероид «Медуза», который под влиянием проходившей кометы изменил свою орбиту и грозил, упав на Землю, учинить на ней страшное опустошение. По пути к астероиду путешественники ненадолго останавливаются на Луне, затем выполняют свою задачу и возвращаются домой.
Межпланетный корабль, называемый «Летучим кольцом», построен по принципу ракеты и летит благодаря реакции газов, вырывающихся из его камеры сгорания. Внутри этой камеры находится цилиндр из урана, на нижнюю поверхность которого направляются особые лучи, разлагающие уран на атомы. Последние взрываются, и продукты разложения в виде лучей гелия вылетают вниз почти со скоростью света.
Внешне аппарат выглядит следующим образом. Нижняя часть его составляет большое кольцо, похожее на спасательный круг, диаметром в 22 метра. На кольцо опираются три решетчатые стойки, сходящиеся вверху и поддерживающие особую камеру, имеющую вид цилиндра. В этот цилиндр вкладываются урановые патроны, взрывы которых и дают реактивную тягу. Одного уранового цилиндра хватает на десятичасовой полет. Само кольцо сделано из алюминия. Высота его — 4,5 метра. В кольце помещаются пассажиры, приборы управления и устройство для производства разлагающих лучей, которые и должны разрушить «Медузу».
Для входа в кольцо к нему приставляют стальную лестницу и проникают внутрь через круглую дверь. Двери корабля — двойные, наподобие кессонных. Внутри кольца при полете натягиваются канаты, за которые путешественники держатся после наступления невесомости.
В каютах была комфортабельная обстановка, столы, кресла, небольшая кухня. В гардеробной находились костюмы из плотной резины с шлемами и резервуарами, которые вмещали жидкий воздух. Медленное испарение его обеспечивает восстановление дыхательной смеси внутри костюма, а избыток удаляется через клапан. По стенам кают висели завернутые в сукно круги, ими закрывались окна и стены, когда Солнце начинало нагревать кольцо.
Перед стартом кольцо было поднято на деревянные козлы. Таким образом создавалось пространство для реактивной струи. Вокруг аппарата раскидывалась проволочная сеть около полукилометра в диаметре, ограничивающая опасную зону.
Вот как описывают авторы момент старта:
«Раздалась команда: «Пустите машину». Глухой рев наполнил воздух. Порыв ветра поднялся из середины поля. Слабое сияние показалось на вершине треножной надстройки кольца, и желтый луч пронизал кольцо, ярко освещая деревянные подмостки. Ветер усилился до шторма, воздух наполнился пылью. Почва сотрясалась под напором желтого потока, который устремился вниз от цилиндра с гулом, подобным шуму Ниагары. Через вихри можно было видеть зарево от внезапно вспыхнувших подмостков: большие бревна и брусья взметнулись в воздух; все сооружение, на котором покоилось кольцо, с грохотом рухнуло и мгновенно развалилось; обломки его были подхвачены и разнесены вихрем, закружившимся от средины аэродрома. Кольцо, лишенное подпоры, однако, не упало — оно оставалось парящим в воздухе, затем стало подниматься — сначала медленно и плавно, подобно воздушному шару, потом быстрее, со свистом ракеты. Через десять секунд оно поднялось на 30 метров. Спустя минуту — было на высоте километра. А потом, устремляясь выше и выше, почти исчезло из виду, оставляя за собой светящийся след, подобный метеорному. Вскоре желтый след исчез по направлению к Луне. Шум был еще слышен. Затем все смолкло. Кольцо на высоте 30 километров вступило в слои атмосферы столь разреженные, что звук не мог в них распространяться».
Как видите, этот проект уже гораздо лучше продуман, нежели многие предыдущие. Но и он — лишь первая попытка осмыслить совокупность проблем, которые встают перед мечтающими о межпланетных путешествиях. Впрочем, роман «Вторая луна» содержит куда меньше технических ляпов, чем недавняя голливудская поделка на аналогичную тему под названием «Армагеддон». Посмотрев этот фильм, невольно задумаешься о том, насколько поглупели авторы научной фантастики за истекшее столетие. Результат таких раздумий, к сожалению, неутешителен…
Однако вернемся к обсуждаемой теме. Самым заметным научно-фантастическим произведением 20-х годов, посвященным вопросам создания космических ракет, стала дилогия немецкого писателя Отто Гейля. В первом романе под названием «Выстрел во вселенную», опубликованном в 1925 году, Гейль описывает очередной вариант полета с Земли на Луну.
Герой романа — немец Август Корф — изобретает в своей лаборатории в Индии взрывчатое вещество необычной силы. При случайном взрыве у Корфа гибнут все чертежи его изобретения, и он один возвращается в Германию. Через некоторое время он узнает, что из Румынии вылетел по направлению к Луне межпланетный корабль-ракета, в постройке которого принимал деятельное участие некий Сухинов, русский по национальности. Вскоре астрономы заметили ракету Сухинова вблизи Луны. Световые сигналы, подаваемые с ракеты, оказались сигналами бедствия. Корфу удалось собрать средства, и он строит в Фридрихсгафене, на берегу Боденского озера, ракету, чтобы лететь на помощь.

Полет «Гериона» Гейля
Ракета Корфа была исполинских размеров и состояла из трех ступеней: нижней, горючим для которой служил спирт (она работала при взлете на скоростях от 0 до 2 км/с, после чего отваливалась), средней — с горючим из смеси спирта с водородом (она развивала скорость полета до 6 км/с), и, наконец, верхней — пассажирской, двигатель которой работал на водороде.
В верхней части ракеты имелось довольно обширное помещение, внутри которого находились салон, каюты, ванна, столовая, курительная, электрическая кухня и баки с водородом. Для измерения ускорений в полете, а через них и скоростей, использовались три акселерометра Безопасным для экипажа ускорением считалось равное учетверенному земному (то есть около 40 м/с2). На самой верхушке ракеты помещался парашют площадью 120 м2.
Для создания искусственной силы тяжести внутри ракеты были устроены центробежные карусели. Повороты ракеты в пространстве достигались с помощью трех маховиков со взаимно перпендикулярными осями.
Межпланетная ракета была названа «Герионом» в честь мифического исполина с тремя телами, жившего на острове Эрифия.
Экипаж состоял из 10 человек: двое операторов, управляющих генератором тока, и один, наблюдающий за взрывами, навигатор и полная смена — всего десятеро, затем командир Корф, его товарищ Бергер и доктор.
Для облегчения старта был построен рельсовый путь шириною в 12 метров и длиною в 2 километра. Сначала рельсы несколько сот метров шли горизонтально, но ближе к концу пути имелось возвышение наподобие трамплина Рене Лорэна.
Взлет «Гериона» прошел благополучно. Через 8 минут после старта межпланетные путешественники уже мчались к Луне в свободном полете со скоростью 9,8 км/с.
В следующем романе «Лунный камень», увидевшем свет через год после первого, Гейль описывает уже полет на Венеру. Новый ракетный корабль, построенный Корфом, называется «Икар» и имеет принципиальное отличие от первого — он стартует не с Земли, а с орбитальной станции. Орбитальная станция, по Гейлю, представляла собой двухмодульное сооружение, части которого вращались друг относительно друга для создания внутри станции искусственной тяжести. Больший модуль имел дискообразную форму с диаметром в 100 метром, меньший — походил на вытянутую вишню. Оба модуля соединялись трубой протяженностью в 16 километров (!).
Что интересно, материалом для станции служил натрий, который при температуре, близкой к абсолютному нулю, делается твердым, как сталь.
На некотором расстоянии от станции космические строители расположили легкое зеркало площадью в 40 гектаров. С его помощью солнечные лучи отражались в направлении Земли, что позволяло «расплавлять льды полюса и изменять земной климат».
Сообщение между станцией и Землей достигалось посредством все тех же ракет. Они имели вид торпеды с выдвижными крыльями, размах которых мог быть изменен от 8 до 100 метров, что заметно облегчало взлет и посадку.
Другой немецкий беллетрист Бруно Бюргель в романе «Ракетой на Луну» дает описание двух летательных аппаратов с ракетными двигателями: одного — малого для полета у Земли, и большого — для полета к Луне.
Малая ракета имела сигарообразную форму с крыльями по бокам. В передней части помещался командир, который наблюдал за окружающим пространством через два окна. В этой рубке находилось управление следующими устройствами: рулями «бокового равновесия» и высоты, рулем поворотов, взрывными камерами. Имелись также прибор связи командира с механиком и подвижная карта пути, по которой стрелка, соединенная с указателем скорости и направления полета, автоматически вычерчивала пройденный путь.
Следующее помещение — кают-компания для пассажиров. Здесь были установлены кресла с кожаными подушками для ног и стол. Далее идет помещение машиниста, который через особые окна следил за работой автомата, непрерывно подающего патроны с сильно-взрывчатым веществом «узамбаранитом» в две взрывные камеры, где происходили взрывы. Продукты взрывов вылетали через две трубы в корме ракеты, толкая ее вперед. Перед взлетом аппарат катился по земле на колесах.
Вокруг взрывных камер и выхлопных труб циркулировал жидкий гелий для охлаждения раскаленной платины, из которой были сделаны эти части. Скорость ракеты — 530 км/ч. Дальность полета без посадки — 8500 километров.
Повороты ракеты достигался неравномерными взрывами в левой и правой взрывных камерах, а также при помощи руля поворота
Большая ракета для полета на Луну, получившая название «Звезда Африки», также снабжалась взрывными камерами с «узамбаранитом». Внутри она была разделена на шесть помещений. В первом находится командир. Здесь имелись койки и кресло, стол и приборы навигации и управления. Во втором помещении располагалась кладовая припасов: провизия, одежда в ящиках, стальные баллоны со сжатым воздухом. В третьем помещении находилась кают-компания с койками, креслами, столом, шкафами и хрустальными, толщиной в 10 сантиметров, окнами с впаянными металлическими сетками. Четвертое помещение — кладовая для горючего; там хранились бутыли с жидким гелием, служащим для охлаждения взрывных камер, цинковые ящики с патронами узамбараиита. Пятое — помещение машиниста. Здесь находились: аккумуляторы для освещения, химическая печь для кухни, сигнальная доска, соединенная с камерой взрывов и с рубкой командира, трубы отопления, идущие от взрывных камер, автомат, который подавал пилюли узамбараиита в камеры. Далее, за платиновой стенкой, располагалось помещение со взрывными камерами, их всего пять. Продукты взрыва по трубам вылетали наружу. Вокруг камер имелось пространство — рубашка, где для охлаждения раскаленных платиновых стенок камер и выводных труб циркулировал жидкий гелий.

Малая ракета Бруно Бюргеля

Большая ракета Бруно Бюргеля
Двойной корпус ракеты состоял из листовой стали. Между стальными оболочками помещался слой шерсти толщиной в 7,6 сантиметра. По бокам ракеты были приварены крылья с элеронами «бокового равновесия». На корме имелись киль и руль поворотов.
Изменение направления движения ракеты достигалось неравномерностью мощности взрывов в пяти камерах, рули же служили лишь вспомогательным средством управления.
Перед взлетом ракета помещалась на тележку, колеса которой могли катиться по рельсам, уложенным вдоль длинной наклонной платформы. Получив достаточную скорость, ракета взлетала вверх. Команда состояла из четырех человек, работающих в две смены, пятый — пассажир.
В случае повреждения оболочки метеоритами дыры предполагалось забивать изнутри свинцовыми клиньями.
У нас, в Советской России, гораздо больший успех имел роман Алексея Толстого «Аэлита» («Закат Марса», 1923 год). В нем известный прозаик давал описание межпланетной ракеты, на которой два героя — инженер Лось и красноармеец Гусев — вылетели 18 августа 1921 года из Петрограда к Марсу и вернулись обратно 3 июня 1925 года, приземлившись близ озера Мичиган.
Корабль Лося имеет следующее устройство. Внешняя форма аппарата — яйцеобразная: высотой 8,5 метра и 6 метров в поперечнике. Посередине, по окружности, идет стальной пояс, прогибающийся книзу подобно зонту. Это приспособление служит парашютным тормозом, увеличивающим аэродинамическое сопротивление аппарата при падении в воздухе. Под «парашютом» расположены три круглые дверцы — входные люки. Нижняя часть яйца оканчивается узким горлом. Его окружает двойная, массивной стали, круглая спираль, свернутая в противоположные стороны, — буфер. Сам аппарат построен из мягкой и тугоплавкой стали, внутри укреплен ребрами жесткости и легкими фермами. Внутри стальной оболочки имеется еще одна — из шести слоев резины, войлока и кожи. Внутренняя полость аппарата вмещает в себя: кислородные баки, ящики для поглощения углекислоты, инструменты, запас провизии, пульт управления с реостатами и двумя счетчиками скорости. Для наблюдения за окружающим пространством устроены особые «глазки» в виде короткой металлической трубки, снабженной призматическими стеклами; эти трубки выходят за внешнюю оболочку аппарата.
Двигатель помещается в нижнем горле, обвитом спиралью. Горло отлито из металла «обин», чрезвычайно упругого и твердостью превосходящего астрономическую бронзу. В толще горла высверлены вертикальные каналы. Каждый из них расширяется наверху и выходит во взрывную камеру. В каждую такую камеру проведена искровая свеча, соединенная проводами с общим магнето. Горючим служит ультралиддит — тончайший порошок необычайной взрывной силы. Конус взрыва очень узок. Чтобы ось конуса взрыва совпадала с осью вертикального канала горла, поступающий во взрывные камеры ультралиддит пропускался сквозь магнитное поле. Запаса ультралиддита хватало на 100 часов. Уменьшая или увеличивая число взрывов в секунду, можно было регулировать скорость подъема и падения аппарата.
В безвоздушном пространстве ракета будет двигаться со все увеличивающейся скоростью, которая может достичь скорости света, если не помешают «магнитные влияния». Путь, который предстоит пройти кораблю, слагается из трех частей: высота земной атмосферы — 75 километров, расстояние между Землей и Марсом в безвоздушном пространстве — 40 миллионов километров и высота атмосферы Марса — 65 километров. Для прохода пути 75 + 65 = 140 километров необходимо, по мнению Толстого, 1,5 часа и еще 1 час для выхода из сферы земного притяжения. Наконец, для перелету на Марс — 6 или 7 часов.

Межпланетный корабль Алексея Толстого
Вот как описывает Алексей Толстой момент старта: «В сарае оглушающе треснуло, будто сломалось дерево. Сейчас же раздались более сильные, частые удары. Задрожала земля. Над крышей сарая поднялся тупой нос и заволокся облаком дыма и пыли. Треск усилился. Черный аппарат появился весь над крышей и повис в воздухе, будто примериваясь. Взрывы слились в сплошной вой, и четырехсаженное яйцо наискось, как ракета, взвилось над толпой, устремилось к западу, шаркнуло огненной полосой и исчезло в багровом, тусклом зареве туч».
А вот что происходило внутри аппарата: «Лось взялся за рычажок реостата и слегка повернул его. Раздался глухой удар — тот первый треск, от которого вздрогнула тысячная толпа Повернул второй реостат. Глухой треск под ногами, и сотрясения аппарата стали так сильны, что спутник Лося схватился за сиденье и выкатил глаза. Лось включил оба реостата Аппарат рванулся. Удары стали мягче, сотрясение уменьшилось. Поднялись. Счетчик скорости показывал 50 метров в секунду. Аппарат мчался по касательной, против вращения Земли. Центробежная сила относила его к востоку. По расчетам, на высоте ста километров он должен был выпрямиться и лететь по диагонали, вертикальной к поверхности Земли».
Любопытный проект ракеты «для исследования верхних слоев атмосферы» предложил профессор Белорусской Академии Борис Армфельдт в своем научно-фантастическом рассказе «Прыжок в пустоту» (1927 год).
По внешнему виду ракета напоминала стрекозу с раскинутыми крыльями. Длина ее превосходила длину океанского лайнера раз в 5–6. Корпус ракеты составляли два длинных цилиндра такого диаметра, что в каждый из них мог бы без затруднения въехать большой пароход. Эти два цилиндра, расположенные рядом, почти вплотную один к другому, поддерживались над поверхностью воды целым лесом железных стоек и раскосов, установленных на двух длинных понтонах. В обе стороны от цилиндров простирались огромные брезентовые поверхности, изогнутые в форме крыльев и снабженные сложными железными каркасами, а также целой системой направляющих струн, которые сходились у небольшой замкнутой камеры, укрепленной между обоими цилиндрами в передней части снаряда. В качестве взрывчатого вещества использовалась смесь пороха с углем.
Для управления направлением движения во время полета служили особые рули-шиты, помещенные у выхода из тела ракеты струи раскаленных газов. Между двумя ракетными цилиндрами, в передней части аппарата, располагалась каюта на трех пассажиров. Эта камера могла, по желанию последних, отделиться от снаряда в последний момент перед его приземлением и медленно спуститься на парашюте.
Старт ракеты Армфельдта происходил следующим образом. Четыре военных крейсера впряглись в ракету и отбуксировали ее в море. Когда путешественники заперлись в каюте, с сопровождающего миноносца был зажжен фитиль у кормы ракеты, после чего миноносец полным ходом удалился от нее. Внезапно аппарат дрогнул и рванулся вперед. Две огромные струи серовато-белого дыма вырвались из его цилиндров. Сотрясение воздуха было так сильно, что палуба и мачты крейсеров задрожали, а зрители попадали, оглушенные страшным шипением и свистом, хотя находились на расстоянии более километра от ракеты.

Взлет ракеты Армфельдта
Когда они очнулись от сотрясения, ракеты уже не было видно; огромные волны шли по морю, и крейсеры качались на них, как лодки на приливе. Длинная струя серого дыма лежала на воде до края горизонта и медленно рассеивалась, раздуваемая ветром…
Перебор проектов межпланетных кораблей с ракетными двигателями, описанных фантастами, можно продолжать и продолжать, однако мы уже вошли в ту область, когда волею энтузиастов фантастика становится реальностью, а значит, пришла пора поговорить об идеях и проектах, которые хоть и остались в большинстве своем на бумаге, но предопределили собой развитие прикладной космонавтики на годы и десятилетия.
ТРЕТИЙ КОСМИЧЕСКИЙ РЕЙХ
Легенда о первом немецком космонавте
Одно время я довольно активно подрабатывал в «желтой» прессе, и, в частности, в разделе, озаглавленном «Иная реальность». Если вы обладаете хотя бы зачатками чувства юмора и буйной фантазией, то вам прямая дорога в эту рубрику. (Замечу в скобках, что какого-то особенного литературного таланта для работы на «желтую» прессу совершенно не требуется, а количество наименований и завидная регулярность подобных изданий позволят вам существенно пополнить свой бюджет.) Принцип, который исповедуют авторы всяческих «Иных реальностей», прост как все гениальное и формулируется примерно так: главное — громкий заголовок, остальное приложится. Под «громким заголовком» при этом понимается некий набор штампов (или стереотипов, если угодно), вызывающих у обывателя яркий ассоциативный ряд. Как легко догадаться, чем больше в этом ассоциативном ряду гиперссылок к «основному инстинкту», тем «громче» заголовок звучит. Потому зазывные титулы типа «Меня изнасиловала инопланетянка!!!» или «Я беременна от чудовища озера Лох-Несс!!!» никогда не выйдут из моды.
Однако даже претендующая на энциклопедичность «Кама сутра» содержит всего лишь около восьмидесяти описаний одного и того же процесса, а газету нужно выпускать каждую неделю. Как результат, перебрав в различных комбинациях «позы», «пришельцев-чудовищ» и на закуску — звезд Голливуда, которые, что общеизвестно, все как один произошли из пещеры снежного человека в Шамбале, авторы «Иных реальностей» с огромной неохотой, но начинают расширять поле затрагиваемых тем. Новаторство здесь не поощряется, поскольку есть мнение, будто бы читатель лучше заглатывает уже знакомую наживку. Вот и видишь на обложках газет нечто вроде: «Крысы-мутанты из московского метрополитена нападают на старушек!!!», «Экстрасенсы нанесли психотронный удар по России!!!», «Мумию Ленина видели в коридорах Смольного!!!».
Или — «Космонавты Третьего рейха вернулись на Землю!».
Легенда о космонавтах Третьего рейха, которые вдруг взяли и вернулись на Землю, существует давно. Лично я знаю пять версий этой истории. Одна из них даже имеет установленное авторство. Известный писатель Александр Бушков в предисловии к своей книге «Россия, которой не было» так прямо и признается: извините, мол, ребята, но космонавтов Третьего рейха придумал я. Из чисто хулиганских побуждений.
Эти побуждения нам понятны. Со вкусом придуманная мистификация сделает честь любому прозаику. Но вынужден вас огорчить, Александр Александрович, космонавтов Третьего рейха придумали гораздо раньше — чуть ли не сразу после войны. И сделали это европейские и американские журналисты, которые были не менее охочи до дутых сенсаций, чем нынешние российские.
В конечном осовремененном виде эта история выглядит так. 2 апреля 1991 года (обратите внимание на дату — случайных дат в мифологии не бывает!) американский катер береговой охраны выловил из Атлантики посадочную капсулу с тремя космонавтами на борту. Каково же было удивление американцев, когда выяснилось, что эти трое являются пилотами Люфтваффе, покинувшими нашу планету 47 лет назад, то есть в самый разгар Второй мировой войны. Полет в космос трех немецких асов был осуществлен по личному распоряжению Гитлера; носителем служила модифицированная ракета «Фау-2». Все 47 лет космонавты находились в анабиозе.
Как и полагается, сообщение о чудесном возвращении с орбиты снабжено большим количеством «цитируемых» заявлений, сделанных безымянными «представителями НАСА», которые занимаются расследованием инцидента.
«Это невероятно, — говорит один из таких «представителей». — Мы никогда не могли бы вообразить ничего подобного. Сам факт существования у немцев космической техники во время войны уже переворачивает все наши представления, но 47-летний полет можно считать настоящим чудом!»
Так он чудом и останется. На веки вечные, аминь.
Однако в самой расчудесной сказке всегда есть намек на правду. Успехи инженеров Третьего рейха в области ракетостроения были так велики, разработки настолько опережали свое время, что это потрясло воображение современников и как следствие вызвало реакцию ожидания новых чудес.
У всякой истории есть предыстория. Есть предыстория и у немецкой ракетной программы.
11 июня 1927 года несколько человек, живших в небольшом немецком городке Бреславле, встретились в задней комнате ресторана и организовали общество с целью распространения идеи о возможности полета человека на другие планеты.
Эта группа людей назвала себя «Обществом межпланетных сообщений» (Verein fur Raumschiffahrt) и стала известной в других странах как «Немецкое ракетное общество».
Присутствовавший на конференции инженер Иоганн Винклер согласился стать президентом «Общества» и наладить издание небольшого ежемесячного журнала, который должен был стать его рупором. Этот журнал, названный «Ракета» («Die Rakete»), действительно начал выходить в свет сразу после учредительной конференции «Общества» и появлялся регулярно до декабря 1929 года.
Программа «Общества» предусматривала широкую популяризацию идеи космического полета, а также сбор членских взносов и пожертвований с целью создания фонда для финансирования экспериментальных работ в этой области.
«Общество межпланетных сообщений» росло очень быстро. В течение года в него вступило около 500 новых членов, и в их числе оказались все, кто когда-либо в Германии или в соседних с ней странах писал и думал о ракетах.
Среди них были профессор физики Герман Оберт, летчик-изобретатель Макс Валье, архитектор Вальтер Гоман, инженеры Франц фон Гефт, Гвидо фон Пирке и Эйген Зенгер. У каждого из этих людей интереснейшая судьба, и о каждом из них можно написать отдельную книгу. Однако эта конкретная книга посвящена не столько людям, сколько идеям. Посему я не стану давать подробное жизнеописание этих выдающихся ученых, отметив основные вехи их биографий применительно к эволюции идей. Замечу только, что далеко не все из них участвовали в создании ракетной мощи Третьего рейха. Ведь главной для НИХ оставалась мечта о завоевании космоса, а в планы руководства Третьего рейха, как мы увидим ниже, это не входило.
В конце 1923 года издательство Ольденбурга в Мюнхене выпустило невзрачную на вид брошюру под названием «Ракета в межпланетное пространство». Автором ее был Герман Оберт. Предисловие к брошюре начиналось так:
«1. Современное состояние науки и технических знаний позволяет строить аппараты, которые могут подниматься за пределы земной атмосферы.
2. Дальнейшее усовершенствование этих аппаратов приведет к тому, что они будут развивать такие скорости, которые позволят им не падать обратно на Землю и даже преодолеть силу земного притяжения.
3. Эти аппараты можно будет строить таким образом, что они смогут нести людей.
4. В определенных условиях изготовление таких аппаратов может стать прибыльным делом.
В своей книге я хочу доказать эти четыре положения…»
Все эти положения, за исключением, пожалуй, последнего, были Обертом доказаны, но метод доказательства был понятен только математикам, астрономам и инженерам. Тем не менее книга Оберта распространилась очень широко; первое издание было распродано в весьма короткий срок, а заказы, посылавшиеся в издательство, почти покрыли тираж второго издания (1925 год) еще до его появления в свет.
Следующая книга Германа Оберта под названием «Пути осуществления космического полета» увидела свет в 1929 году. В ней немецкий ученый обобщил и скрупулезно проанализировал свои предыдущие и новые разработки в области ракетостроения.
Эти две книги стали основой для дальнейшего развития идей о межпланетных полетах как в Германии, так и в других странах Европы. В них, помимо общей теории ракетных двигателей, содержалось подробное описание трех типов ракет и проекта орбитальной станции.
Первый тип ракет, названный «Моделью В», служил носителями научных приборов для исследования верхних слоев атмосферы. Простейшая из «регистрирующих» ракет (сегодня их бы назвали «геофизическими») имела обтекаемый корпус из листовой меди. В верхнем отсеке ракеты помещался жидкий кислород, а под ним — горючее: бензин, бензол, спирт, нефть или жидкий водород. Кислород течет по специальной трубе, смешиваясь в камере сгорания с парами горючего, где происходит воспламенение смеси. Жидкое горючее через большое количество отверстий вбрызгивается в камеру сгорания. Образующиеся продукты горения через горло с дюзой вырываются наружу. Для автоматического нагнетания кислород находится под давлением от 18 до 21 атмосферы, горючее — от 20 до 23 атмосфер. Поэтому стенки баков должны быть прочными, а значит, тяжелыми. Подобная ракета, согласно расчетам самого Оберта, вряд ли могла подняться выше 100 километров.
Следующая «регистрирующая» ракета имела уже более сложную конструкцию. Она состояла из двух ракет: большой «спиртовой» и малой «водородной». Малая, помещаемая внутри большой, имела собственную дюзу и камеру сгорания. В качестве полезного груза она несла в себе регистрирующие приборы и парашют. Вокруг дюзы были установлены стабилизаторы, остающиеся в сложенном положении, пока работает большая ракета. Когда горючее в последней истощится, ее верхушка открывается, и под действием тяги собственного двигателя вылетает малая ракета.
Кроме того, Оберт предложил еще и третий вариант «регистрирующей» ракеты — представляющий собой модификацию двухступенчатого варианта, снабженную вспомогательной третьей ступенью, осуществляющую разгон на первом «стартовом» участке траектории.

«Модель В» Германа Оберта
Все три варианта «Модели В» должны были стартовать не с земли, а с высоты в 5500 метров над уровнем моря, куда их должны были поднимать два специальных дирижабля.
Стоимость «регистрирующей» ракеты, изготовленной по проекту «Модель В», Оберт оценивал в 10–20 тысяч «довоенных» немецких марок. Оценить сегодня, много это или мало, нам затруднительно, но сам ученый считал эту стоимость вполне приемлемой.
Разумеется, все эти модели «регистрирующих» ракет были представлена нерабочими эскизами и, вероятно, вообще не взлетели бы, вздумай кто-нибудь построить их в строгом соответствии с описанием.
Следующий приведенный в книге проект заслуживал куда большего внимания.
Космический корабль, получивший название «Модель Е», приобрел такую известность, что его аэродинамический профиль вплоть до середины 80-х годов чаще всего изображали художники, иллюстрирующие фантастические произведения о космических полетах. Благодаря этому корабль Германа Оберта стал неотъемлемой частью европейской культуры, и теперь даже школьники, рисуя в тетрадях эскизы ракет, представляют нам нечто, похожее на схему 1923 года. Кроме прочего, этот характерный профиль увековечен на медали имени Германа Оберта, присуждаемой немецким «Обществом по исследованию космоса» за фундаментальные исследования в области космонавтики.
Что же представляет собой «Модель Е»? Это ракета с одной большой дюзой и широким основанием, к которому прикреплены четыре опоры-стабилизатора. Она состоит из двух частей: первая разгонная ступень работает на спирте и жидком кислороде, а вторая при том же окислителе использовала жидкий водород. В верхней части второй ступени размещена каюта с иллюминаторами, позволяющими вести астрономические наблюдения, — Оберт называет ее «аквариумом для земных жителей». Входной люк расположен в самом носу ракеты, и в каюту можно попасть только по специальной вертикальной шахте, проходящей сквозь специальный отсек, в котором упакован тормозной парашют. Высота всей ракеты, рассчитанной на двух пассажиров, оценивается Обертом как «примерно соответствующая высоте четырехэтажного дома». Общий вес заправленной ракеты перед стартом — 288 тонн.

«Модель Е» Германа Оберта: а — головка спиртовой или водородной ракеты; f — парашют; Т — проход в помещение I; е — резервуар для водорода или для воды со спиртом; S — резервуар для кислорода; I — кабина наблюдателя и место размещения приборов; Р — перископ; m, n — насосы подачи горячего газа; p1 и p2 — насосы для горючего; р3 и р4 — кислородные насосы; Fm — критическое сечение сопла; z — распылитель; l — регулирующие штифты; t — стенки сопла; W — стабилизаторы; О — камера сгорания. Сплошными линиями показана спиртовая ракета, пунктирной линией — водородная.
Чтобы преодолеть земное притяжение и сопротивление земной атмосферы, ракета Оберта, согласно его собственным расчетам, должна была лететь 332 секунды при ускорении 30 м/с2. По истечении этого времени она достигнет высоты 1653 километров и скорости 9960 м/с.
Возвращение пассажирской кабины на Землю Оберт планировал осуществлять посредством парашюта либо при помощи специальных несущих поверхностей и хвостовых стабилизаторов, позволяющих реализовать планирующий спуск.
Оберт предсказывал, что при полете в межпланетном пространстве ракета будет неравномерно нагреваться солнечными лучами. Чтобы избежать чрезмерного перегрева пассажирской кабины, он предложил довольно необычное решение. Во-первых, он указал, что пассажирская кабина должна быть сделана из толстого листового алюминия без специальной теплоизоляции. Во-вторых, в этой кабине необходимо проделать как можно больше «окон», закрытых прозрачными кварцевыми пластинками. В-третьих, внешняя оболочка кабины должна быть окрашена таким образом, чтобы она хорошо отражала свет, а одна из сторон — обклеена черной бумагой или шелком. И наконец, в-четвертых, кабина должна быть отделена от ракеты (соединяясь с ней лишь электрической проводкой), а парашют и головной обтекатель раскрыты так, чтобы им можно было предать в пустоте любое положение. Внутри такой пассажирской кабины тепло должно было передаваться конвекцией воздуха по всем направлениям. Оберт собирался регулировать температуру в ней, обращая к Солнцу большую или меньшую часть «черной» или «светлой» поверхности, а также меняя взаимное положение элементов корабля (собственно водородная ракета, фрагменты обтекателя, кабина и парашют), убирая что-то в тень, а что-то выставляя под солнечные лучи.
Оберт предусмотрел и костюмы для безвоздушного пространства. По этому поводу он писал:
«На летящей ракете при выключенном двигателе опорное ускорение отсутствует и пассажиры могут в специальных костюмах выходить из пассажирской кабины и «парить» рядом с ракетой. Костюмы должны выдерживать внутреннее давление в 1 атмосферу. Мы бы предложили изготовлять их из тонкого отражающего листового металла по принципу современных глубоководных водолазных костюмов. Вместо рук мы бы сделали крюки, на ногах также полезно было бы иметь крюки, чтобы зацепляться за выступы ракеты, за ее канаты и за кольца, специально для этой цели вделанные в стенки ракеты.
Нам кажется непрактичным давать человеку, находящемуся вне ракеты, воздух через шланг из пассажирской кабины, целесообразнее подавать ему сжатый или жидкий воздух из специального баллона. Выдыхаемый воздух должен поступать во второй сосуд, который может растягиваться. Спиральные пружины поддерживают его при атмосферном давлении. Время от времени этот сосуд можно опорожнять, открывая краны, а возникающая при этом небольшая сила отдачи позволит человеку при свободном полете до некоторой степени управлять своими движениями.
Человек, вылезающий из камеры, должен быть обязательно привязан к ракете канатом. В этот канат могут быть вплетены также телефонные провода, так как безвоздушное пространство, как известно, не передает звук, а весьма желательно, чтобы человек, находящийся вне кабины, мог разговаривать с людьми в ракете.
<…> Чтобы человек мог вылезать из пассажирской кабины без большой потери воздуха, в камере должна быть труба, которую можно герметически закрывать с обеих сторон. Эта труба послужит также для входа в пассажирскую кабину перед стартом».
Помимо «Модели Е» немецкий ученый рассматривал еще один вариант двойной ракеты (ступень «спирт-кислород» и ступень «водород-кислород»), в которой для увеличения тяги вместо одной дюзы использовалось четыре. Эти дюзы должны были располагаться симметрично на корме космического корабля.
Кроме различных модификаций «Модели В» и «Модели Е», Герман Оберт довольно много страниц посвятил проекту так называемого «электрического космического корабля». В качестве движителя для своей версии электрического корабля Оберт планировал использовать «электрофорную машину». Речь здесь идет об особой разновидности паровых машин, которые приводятся в действие солнечным светом. В свою очередь эти паровые машины будут приводить в действие электрогенераторы, создающие направленный и сильный поток положительно заряженных частиц, преобразуемый в тягу. Поток может быть получен либо посредством солевого анода с противолежащей платиновой решеткой накаливания, либо посредством полого электрода, наполненного кислородом или парами натрия. Оберт указывает, что предпочтительнее все же использовать хлор, кислород, натрий и минеральные соли, так как их можно добывать из лунных пород или астероидов, делая там промежуточные остановки в ходе межпланетного путешествия.
Простейшая схема электрического космического корабля выглядит следующим образом. Пассажирская капсула космического корабля соединена изолированными кабелями с шестью двигателями. Пилот может произвольно менять положение двигателей относительно друг друга и кабины. На космическом корабле и на отдельных двигателях находятся по два электрода. Для создания в корабле искусственной силы тяжести к кабине также присоединены два «гравитационных отсека», то есть груза, закрепленных на длинных штангах и приведенных во вращение относительно одной из осей корабля.
Оберт также мечтал о том времени, когда межпланетные сообщения станут будничным делом, и тогда станет возможным собирать на основе электрофорных машин промежуточные «заправочные» станции. Посылая на большие расстояния «электрические лучи», подобные станции могли бы снабжать энергией небольшие ракетные самолеты весом в 10 тонн, снаряженные особым сетчатым каркасом, обтянутым металлической фольгой и улавливающим эти лучи. «Заправочные» электрические корабли можно было бы разместить на орбитах всех планет Солнечной системы, что еще упростило бы межпланетные сообщения, так как пассажирские ракеты более не нуждались бы в больших запасах топлива при космических полетах.
В 1924 году популяризацией идеи межпланетных путешествий занялся мюнхенский литератор и бывший пилот Макс Валье, который выпустил книгу «Полет в мировое пространство».
В своей книге Валье, делая критический обзор различных способов метания аппарата в космос с помощью пушки и центробежной машины, доказывает преимущество ракет на жидком топливе и, основываясь на работах Оберта, дает свое видение эволюции ракетной техники.
На начальном этапе Макс Валье предлагал превратить обычный самолет в ракетный путем простой замены двигателей внутреннего сгорания ракетными. Он утверждал, что в дальнейшем, постепенно совершенствуя двигатели и сокращая площадь несущих поверхностей, можно будет создать из такого самолета пилотируемую космическую ракету.
Первый проект, описанный в книге, представляет собой обычный для того времени аэроплан с винтом, большими крыльями и двумя ракетами-ускорителями, закрепленными под ними. Второй аэроплан имеет четыре ракетных двигателя. Третий уже лишен винта, крылья имеют меньшую площадь, но недостаток подъемной силы компенсируется шестью ракетными двигателями.
Далее фантазия Валье движется по накатанной колее, умножая элементы конструкции и превращая обычный аэроплан в настоящего ракетного монстра. Вот перед нами реактивный аэроплан с двумя фюзеляжами и восемнадцатью ракетными двигателями (!). А вот наконец и конечный продукт — двухступенчатый межпланетный корабль, космическая ступень которого точь-в-точь походит на ракету Оберта, а стартовая представляет собой доведенный до полной неузнаваемости аэроплан с толстыми короткими крыльями и ракетными ускорителями.

Ракетный аэроплан Валье с двумя фюзеляжами

Космическая ракета Валье
Валье приводит результаты своих расчетов, из которых следует: чтобы ракета получила скорость, равную скорости извержения из нее газов, топливо должно составлять 63,21 % от полного ее веса. Если скорость ракеты желательно иметь в два или три раза больше, то вес горючего составит соответственно 86,46 % и 95,2 % полного ее веса. При порохе, который дает скорость истечения лишь 2500 м/с, вес горючего получается весьма большой. Путь применения в качестве горючего смеси водорода с кислородом (скорость истечения — 5000 м/с) хотя и заметно облегчит ракету, однако будет дорогим и опасным. Поэтому Валье рекомендовал ограничиться опытным полетом на высоту 250–300 километров, что потребовало бы меньших затрат.
Чтобы сложный материал лучше усваивался неподготовленным читателем, популяризатор из Мюнхена снабдил свой труд огромным количеством впечатляющих иллюстраций. Без них, увы, книга Валье не выглядит чем-то значительным, являясь, по сути, пересказом чужих идей.
На этих иллюстрациях мы видим этапы будущего полета пассажирской ракеты на Луну. Вот старт ракеты с Земли, со специально подготовленного трамплина. Затем показан момент отделения от ракеты первой ступени-самолета, который, как следует из пояснительного текста, поднял ее на высоту около 6 километров; сама же ракета после этого продолжает двигаться под действием собственного двигателя. На следующем рисунке изображен ее полет между Землей и Луной под влиянием инерции и сил тяготения. Показан момент, когда еще идет нарастание скорости и пассажиры испытывают перегрузку (согласно тексту — 4,5 g). Далее мы видим свободный полет людей внутри гондолы в условиях невесомости. На другой картинке видно, что при свободном полете ракеты пассажиры могут выходить в скафандрах в безвоздушное пространство и лететь рядом с ракетой. И, наконец, на следующем рисунке показан обратный спуск ракеты на Землю: сначала при помощи парашюта, а потом с использованием тормозящей реакции выхлопных газов.
Параллельно с Обертом и Валье над темой межпланетных перелетов работал и Вальтер Гоман, архитектор города Эссена. Его книга «Возможность достижения других небесных тел» увидела свет в 1925 году.
Книга содержала подробное и поэтапное описание программы межпланетной экспедиции, ее математической модели и оптимальных траекторий. Однако в отличие от предшественников Гоман не счел нужным говорить о каких-то конкретных конструкциях космических кораблей, ограничившись математическим исследованием величин данного или принятого количества топлива, необходимого для предполагаемой работы ракетного двигателя.
В качестве иллюстрации к своим выкладкам Гоман нарисовал «пороховую башню», которую только с очень большой натяжкой можно назвать проектом космического ракетного корабля.
Смысл иллюстрации заключался в следующем. Если представить себе, что на некоторую работу потребовалось бы 6 минут, и если принять, что «башня» горела бы только у основания, то можно было бы провести через нее 6 параллельных линий. Это дало бы 6 дисков пороха плюс полезную нагрузку (капсулу с двумя пассажирами), которую необходимо привести в движение. Каждый из шести дисков имел бы одинаковую толщину, но разный диаметр и разный вес. Каждый слой пороха представлял бы собой количество то-топливанеобходимое для работы в течение одной минуты: самый большой диск снизу указывал бы количество пороха, необходимого для работы в первую минуту, и так далее. Если сделать достаточно большой и аккуратный чертеж, то можно разделить любой слой на 60 частей и найти количество пороха, необходимое для работы ракеты в каждую секунду.
Исходя из расчета 30-дневного полета Гоман оценил вес каюты и припасов в 2260 килограммов. При этом вес всей «пороховой башни» должен был составить 2799 тонн.

«Пороховая башня» Гомана
Для того чтобы изменить направление полета, Гоман советовал пассажирам, находящимся внутри снаряда, передвигаться в противоположном от необходимого направлении, цепляясь за поручни, прикрепленные внутри стенок. При этом снаряд будет вращаться в обратную сторону, пока его виртуальные «дюзы» не окажутся повернуты в желаемом направлении.
Для облегчения спуска на Землю Гоман предлагал к летящему из межпланетного пространства со скоростью 11,1 км/с снаряду приделать тормозящие поверхности, которые задерживали бы его полет в земной атмосфере, а, кроме того, сам спуск на Землю должен был производиться не радиально, а по спирали: корабль должен был описывать вокруг Земли все меньшие и меньшие эллипсы, верхушки которых пронизывали бы земную атмосферу на высоте 75 километров, пока скорость полета не уменьшилась бы до необходимой величины. Далее полет переходит в планирование по глиссаде длиною 3646 километров.
Другой член «Немецкого ракетного общества» — австрийский инженер Франц фон Гефт — получил известность благодаря тому, что теоретически разработал подробную программу испытаний высотных и межпланетных ракет.
В докладе, сделанном перед «Обществом» в Бреслау 9 февраля 1928 года, Гефт дал описание предполагаемых им опытов с ракетами разных типов под общим обозначением «RH» (от «Rakete-Haft») с порядковыми номерами в римской числовой системе.
Первый тип «RH I» — разновидность «регистрирующей» ракеты. Длина ее составляет 1,2 метра, диаметр — 20 сантиметров, вес — 30 килограммов. Топливо — 10 килограммов спирта на 12 килограммов жидкого кислорода. Она должна была подниматься на высоту 10 километров при помощи воздушного шара и нести полезный груз — «метеорографы» весом в 1 килограмм. На этой высоте двигатель ракеты автоматически запускался, сама ракета отделялась от шара и должна была взлететь до уровня в 100 километров. Благополучное возвращение приборов на землю гарантировал специальный парашют.

Ракета фон Гефта
Ракета «RH II» была подобна первой, но с пороховым двигателем.
Ракета «RH III» — двойная, весом, в 3 тонны. В качестве полезного груза она должна была нести от 5 до 10 килограммов пороха, который при падении на Луну должен был взорваться яркой вспышкой, которую фон Гефт планировал наблюдать с Земли с помощью мощного телескопа. Кроме того, при помощи системы гироскопического управления эта ракета смогла бы облететь вокруг Луны, сфотографировать ее невидимую сторону и затем вернуться на Землю.
Ракета «RH IV» подобна «RH III», но предназначалась для переброски срочной почты с континента на континент.
Согласно предложению фон Гефта, ракеты «RH III» и «RH IV» должны были сначала подниматься на высоту 6 километров при помощи воздушных шаров или вспомогательных ракет, а затем уже начинать самостоятельный полет.
Космический корабль фон Гефта «RH V» предназначался для межпланетных перелетов и представлял собой «летающее крыло» с установленным на корме пакетом ракет. Стартовать он должен был с воды, поднимаясь до высоты 25 километров по вертикали, а затем переходя на пологую траекторию. Начальный вес «RH V» — 30 тонн, конечный — 3 тонны, длина — 12 метров, ширина — 8 метров, высота корпуса — 1,5 метра. Количество членов экипажа — от 2 до 4 человек. Ускорение при вертикальном взлете должно было составлять 30 м/с2, максимальная скорость полета — 9,2 км/с. Управление кораблем осуществлялось посредством рулей высоты и поворотов, а также с помощью особой поворотной дюзы.
Франц фон Гефт полагал, что в комбинации с отделяемыми вспомогательными ракетами «RH VI» (вес — 300 тонн), «RH VII» (вес — 600 тонн) и «RH VIII» (вес — 12 000 тонн) его «пятерка» способна развить скорость 27,6 км/с и достигнуть Луны, Марса и Венеры.
Любопытно, что австрийский инженер предусмотрел возможность многократного использования разгонных ракет. По его проекту, в головной части каждой из них должна быть устроена кабина с пилотом, который осуществит плавный спуск и приводнение отработавшей свою часть траектории ракеты.
Когда изучаешь доклад Франца фон Гефта, то невольно восхищаешься даром технического предвидения этого ученого, который еще в 1928 году сумел предугадать черты будущих космических программ. На подобном фоне рассуждения того же Макса Валье об эволюции ракетных аэропланов представляются в лучшем случае ошибочными. Однако не все так просто, как может показаться на первый взгляд. На самом деле австрийский инженер и немецкий пилот-литератор говорили о двух параллельных путях развития космических технологий, которые в то время представлялись публике совершенно равнозначными. Но самое интересное заключается в том, что если бы не цепь случайностей, связанных по большей части с политикой, а не наукой, то «линия» Макса Валье вполне могла бы восторжествовать и сегодня выкладки фон Гефта воспринимались бы нами как нечто, имеющее отношение лишь к несерьезной фантастике.
Этот свой последний тезис я попытаюсь вскоре обосновать.
Опыты с «ракетными» самолетами
«Немецкое ракетное общество» создавалось не только для того, чтобы его члены могли обмениваться идеями и коллективно решать различные проблемы общей теории и программы межпланетных путешествий. Одной из главных задач, которая стояла перед Обществом в целом, была задача подготовки натурных испытаний ракет и ракетопланов, а также поиск спонсоров, которые могли бы выделить на это необходимые суммы.
Не следует забывать, что и Германия, и Австрия в те годы переживали не лучшие времена, и проблема финансирования стояла очень остро. Поэтому случаи сотрудничества энтузиастов ракетостроения с богатыми фирмами были единичны и заслуживают отдельного внимания.
Максу Валье удалось заинтересовать ракетами автомобильного магната Фрица фон Опеля, который увидел в этой теме возможность создания эффектной рекламы при минимальных затратах. В результате появилась идея создания «ракетного автомобиля». Своей цели фон Опель достиг, однако сами эксперименты с автомобилями, снабженными батареями пороховых ракет, имели малую научную и практическую ценность.
Тогда Валье зашел с другой стороны и в развитие своей концепции об эволюции ракетного аэроплана предложил фон Опелю провести серию опытов с ускорителями для самолетов.
Такие опыты действительно состоялись 10 и 11 июня 1928 года на горе Вассеркуппе в Западной Германии. Самолет, предоставленный для эксперимента исследовательским институтом общества «Рен-Росситен Гезельшафт», был обычным планером типа «утка». Ракетные двигатели для эксперимента сконструировали на пиротехнической фабрике «Синус», принадлежащей инженеру Фридриху Зандеру, который также состоял членом «Немецкого ракетного общества». А финансировал все это дело сам фон Опель.
Для испытаний Зандер разработал пять типов ракет, три — для моделей планеров и два — для полноразмерного планера. Пилотом ракетного планера был назначен Фридрих Штаммер.

Ракетный планер типа «утка»

Взлет ракетного планера Опеля
Естественно, что первые испытания были проведены на моделях. Это были так называемые «бесхвостки» с размахом крыла немногим более 210 сантиметров и весом около 13 килограммов. На одной из них установили мощную ракету с тягой 75 килограммов. Как и следовало ожидать, для столь мощной ракеты крылья и элероны модели оказались просто помехой — ракета мгновенно подняла модель вертикально вверх, а когда кончилось топливо, модель упала на землю.
Предварительные опыты позволили сделать определенные выводы относительно возможности установки ракет на планер. Экспериментаторы отказались от ракет с тягой 360 килограммов, а остановились на двух типах ракет с тягой соответственно 12 и 15 килограммов. Поскольку пилот мог допустить ошибку, воспламенение ракет осуществлялось электрическим запалом, рассчитанным на последовательное включение ракет. Для запуска планера с земли использовался обычный резиновый трос. Пилот не должен был включать ракеты, пока планер не поднимался в воздух и не освобождался от троса.
Несмотря на все эти приготовления, первые две попытки поднять в воздух планер закончились неудачей: что-то случилось с резиновым тросом, а Штаммер включил один из двигателей еще до того, как планер оказался в воздухе. Топливо выгорело, но скорость планера не увеличилась. Во второй раз Штаммеру удалось подняться в воздух, но при выравнивании планера он обнаружил какую-то неисправность и сделал посадку, пролетев около 200 метров без второго двигателя. Планер был возвращен на стартовую площадку, и второй двигатель был снят. После осмотра системы зажигания на планер установили два ракетных двигателя на твердом топливе с тягой по 20 килограммов. Расстояние, которое планер пролетел на этот раз, составило около 1,5 километра, а весь полет длился немногим более одной минуты. Пилот впоследствии отмечал, что «полет был приятен ввиду отсутствия вибраций от вращающегося винта».
При следующем испытании предполагалось перелететь через небольшую гору. Запуск прошел хорошо, и, когда планер поднялся в воздух, была включена первая ракета. Через 2 секунды она с грохотом взорвалась. Горящие куски пороха мгновенно подожгли планер, однако пилот сумел резким маневром сбить огонь и посадить аппарат. Сразу после посадки загорелась, но, к счастью, не взорвалась вторая ракета. Планер был почти уничтожен, и потому общество «Рен-Росситен Гезельшафт» отказалось от продолжения экспериментов.
После этого разработкой планера с ракетным двигателем занялась фирма «Рааб-Катценштейн» в Касселе. Она построила бесхвостый самолет, рассчитанный на одного пилота. По неизвестным причинам первые полеты закончились неудачно, и фирма также отказалась от опытов.
Не сдался один только фон Опель. Его новый ракетный планер был готов к летным испытаниям 30 сентября 1929 года. Для запуска применялась деревянная направляющая длиной около 21 метра. Здесь не было ни резинового троса, ни какого-либо другого стартового устройства — взлет осуществлялся только с помощью ракет. Первые два испытания, проведенные ранним утром 30 сентября, не были успешными. Ракетные двигатели не развили достаточной тяги, чтобы оторвать планер от земли; он сделал всего лишь несколько коротких прыжков. После завтрака фон Опель предпринял еще одну попытку, на этот раз удачную. Планер поднялся в воздух и совершил полет продолжительностью около 10 минут. При этом максимальная скорость планера составила 160 км/час Однако во время посадки загорелись крылья, в результате чего ракетоплан фон Опеля сильно пострадал и оказался совершенно непригодным для дальнейшего использования.
Осенью 1928 года Герман Оберт уговорил создателей кинофильма «Женщина на Луне» (режиссер — Фриц Ланг, студия «Уфа-фильм») использовать для рекламы демонстрационный запуск ракеты, являющейся модификацией предложенной им в свое время «регистрирующей» ракеты. Помощниками Оберта в этом деле были инженер Рудольф Небель и русский эмигрант Шершевский — человек без определенных занятий, увлекавшийся математикой и писавший статьи в авиационные журналы. Ракета, получившая название «Кегельдюзе» («Kegeldiise»), должна была иметь форму торпеды длиной около 1,8 метра. Ее корпус изготовлялся из алюминиевого сплава. После передачи чертежей на завод, где обрабатывались детали ракеты, Оберт и Небель начали работать над системой раскрытия парашюта, которую они предполагали испытать с помощью пороховых ракет. Связавшись с заводом пороховых ракет, они узнали, что для их целей вполне подойдет разработанный заводом механизм для выбрасывания сложных звездных фейерверков.
Внезапно, когда до окончания работ оставалось всего лишь несколько недель, Оберт изменил свои планы, спроектировав для предстоящей демонстрации специальную модель. Она состояла из длинной алюминиевой трубы, в центре которой помещалось несколько окруженных жидким кислородом узких цилиндрических шашек из вещества, богатого углеродом. Эти углеродные шашки должны были гореть сверху вниз. Газы должны были выбрасываться через систему сопел в верхней части ракеты.
Эта система, известная под названием «ракеты с носовой тягой», на первый взгляд давала много преимуществ. Ракету не нужно было делать особо прочной, и за счет этого значительно уменьшался ее сухой вес. Идея тяги ракеты (а не толкания), казалось, позволяла обойтись без механизма управления. Однако в действительности никаких выгод «носовая тяга» не давала, Оберт провел несколько подготовительных экспериментов, но не смог подобрать подходящее углеродосодержащее вещество, обеспечивающее надлежащую скорость горения. Фирме «Уфа-фильм» пришлось опубликовать заявление о том, что запуск ракеты откладывается на неопределенное время.
Первые неудачи несколько охладили горячий энтузиазм членов «Немецкого ракетного общества». Однако общее разочарование не привело к его закрытию, а, наоборот, позволило перегруппировать силы в поисках выхода из сложившейся ситуации. Было принято важное решение: «Общество» должно было попытаться приобрести оборудование, изготовленное по заказу фирмы «Уфа-фильм» и по-прежнему находившееся у нее.
На этой же конференции Рудольф Небель предложил построить ракету с жидкостным двигателем, чтобы доказать ее преимущества перед ракетами на твердом топливе. По его мнению, эта ракета должна была иметь возможно меньшие размеры, что объяснялось недостатком средств.
Небеля попросили составить эскиз предварительного проекта своей ракеты, которую он назвал «Мирак» («Mirak», сокращение от «Minimumrakete»), а тем временем фирма «Уфа-фильм» после некоторых колебаний передала «Обществу» оборудование Оберта.
Членам «Общества» удалось связаться с институтом «Хемиштехнише рейхсанштальт» (Государственный институт химии и технологии), директор которого доктор Риттер предложил показать ему ракетный двигатель на жидком топливе. Имелась договоренность, что если демонстрация пройдет хорошо, Риттер выдаст Оберту и компании документы, которые помогут «Обществу» при обращении в другие организации за финансовой поддержкой.
В назначенный для испытания день шел проливной дождь. «Кегельдюзе» была установлена на регистрирующем приборе и вместе с ним помещена в неглубокое щелевое убежище в земле. Несмотря на большую потерю жидкого кислорода, объяснявшуюся высокой влажностью воздуха, молодому члену «Общества» Клаусу Риделю, который занимался налаживанием оборудования, удалось запустить двигатель. В этом ему помогал еще один новый член «Общества» — молодой студент Вернер фон Браун.
Доктор Риттер выдал Оберту официальный документ, удостоверяющий, что «двигатель «Кегельдюзе» исправно работал 23 июля 1930 года в течение 90 секунд, израсходовав б килограммов жидкого кислорода и 1 килограмм бензина и развив при этом тягу около 7 килограммов».
Испытание в Государственном институте явилось также испытанием и в другом отношении. Все чаще раздавались голоса, требовавшие запретить эксперименты с ракетами из-за несчастного случая с Максом Валье, который погиб незадолго до этого во время испытаний жидкостного двигателя для нового ракетного автомобиля.
После успеха с «Кегельдюзе» члены «Общества» взялись за отработку «Мирака». Испытательным полигоном для этой ракеты стала ферма Риделей неподалеку от саксонского городка Бернштадта. Эксперименты с ней продолжались до сентября 1930 года, пока ракета не взорвалась прямо на стенде.
Как ни странно, но новая катастрофа способствовала лишь увеличению финансирования со стороны частных лиц, и вскоре Небель смог приобрести участок площадью около 5 квадратных километров, расположенный в районе Рейникендорфа, рабочего пригорода Берлина. 27 сентября 1930 года «Общество» стало владельцем этого участка и объявило этот день «днем рождения ракетного испытательного полигона», который Небель назвал «Ракетенфлюгплатц» («Ракетный аэродром»). Там были установлены ракета Обер-та, ее полноразмерная деревянная модель, железная пусковая направляющая для запуска ракет и вторая модель ракеты «Мирак», работа над которой была уже завершена
«Мирак-2» представляла собой копию первой ракеты во всем, за исключением несколько больших размеров. Когда Небель работал над проектом первой ракеты «Мирак», он в основном старался не отходить от принципов проектирования пороховой ракеты. Подобно пороховой ракете, его «Ми-рак» имел «головку» и «направляющую ручку». Последняя представляла собой длинную тонкую алюминиевую трубу, служившую в качестве бака для бензина. «Головка» была сделана из литого алюминия и обработана наподобие артиллерийского снаряда. Носовая часть была съемной для заправки ракеты жидким кислородом, здесь же помещался предохранительный клапан. Дно головки было медное, внутри него находилась камера сгорания — уменьшенная копия «Кегель-дюзе». Фактически камера сгорания являлась дном бака с жидким кислородом. Предполагалось, что таким образом она послужит двум целям: жидкий кислород будет охлаждать ракетный двигатель, а тепло от ракетного двигателя станет выпаривать часть жидкого кислорода, тем самым создавая избыточное давление для принудительной подачи топлива в камеру сгорания. Бензин должен был подаваться в камеру сгорания под давлением, создаваемым патроном двуокиси углерода того же типа, который применяется для приготовления содовой воды. Этот патрон помещался в конце хвостовой части.
Вторая ракета «Мирак» взорвалась весной 1931 года от разрыва бака с жидким кислородом. После этого решено было построить третью ракету, учтя все ошибки проектирования. Двигатель теперь должен был располагаться под дном бака с жидким кислородом. И вместо одного трубчатого бака с бензином было предложено сделать два, симметрично прикрепленных к баку с кислородом, причем второй бак содержал сжатый азот для принудительной подачи обоих топливных компонентов в двигатель. Это позволяло обойтись без патрона двуокиси углерода. Но что важнее всего — на третьей ракете «Мирак» устанавливался двигатель нового типа, а не «Кегельдюзе».
Изготовляя «Кегельдюзе» из стали, Оберт, вероятно, не осознавал, что следовал примеру конструкторов пушек. Температура горения всех типов артиллерийского пороха также выше температуры плавления стали, из которой выполняются стволы орудий, но время горения слишком непродолжительно, чтобы причинить стволу ущерб. Этот принцип по-прежнему применим в ракетных двигателях с очень коротким периодом работы, скажем в 5 секунд или меньше. Но жидкостный ракетный двигатель должен работать довольно долго — по крайней мере несколько минут. Поэтому проблема заключалась в том, чтобы не допустить перегрева металла.
Реальным решением проблемы явилось предупреждение перегрева стенок камеры сгорания путем их охлаждения. Поэтому в качестве материала был использован очень чистый алюминий. Новый двигатель состоял из двух секций, сваренных вместе. В конечном виде он весил около 85 граммов и хорошо работал, поглощая 160 граммов жидкого кислорода и бензина за одну секунду и обеспечивая при этом тягу в 32 килограмма. Между собой члены «Общества» прозвали его «яйцом», потому что он и в самом деле и по форме, и по размерам походил на яйцо.
Тем временем Иоганн Винклер, который уже не являлся председателем «Немецкого ракетного общества», но оставался его действительным членом, при финансовой поддержке фабриканта Хюккеля построил и запустил ракету «HWR-1» с жидкостным двигателем, застолбив таким образом свой приоритет на этом поприще. Ракета Винклера имела в длину 60 сантиметров и весила примерно 5 килограммов, из которых на долю топливных компонентов приходилось 1,7 килограмма. Она была похожа на призму, состоявшую из трех трубчатых баков, частично закрытых алюминиевой обшивкой, которая придавала ракете вид коробчатого воздушного змея. В одном баке находился сжиженный метан, в другом — жидкий кислород, а в третьем — «инертный газ под давлением» (так Винклер называл сжатый азот). Двигатель представлял собой кусок цельнотянутой стальной трубы без швов длиной 457 миллиметров, расположенной по оси ракеты. Первое испытание было проведено 21 февраля 1931 года на учебном плацу недалеко от города Дессау, но вследствие технической неисправности ракета взлетела всего лишь на 3 метра от земли. При вторичном испытании, 14 марта 1931 года, ракета Винклера отклонилась от вертикальной траектории и потому не достигла расчетной высоты, которая должна была составить 500 метров, но в остальном эксперимент прошел успешно.
10 мая 1931 года во время испытаний, проводившихся Риделем на «Ракетенфлюгплатц» с двигателем для замера тяги, произошел непредвиденный взлет всего устройства, которое медленно поднялось на 18 метров, а затем упало, повредив топливный трубопровод. К 14 мая ракета была отремонтирована, несколько облегчена и готова для первого экспериментального пуска. В назначенный час «летающий испытательный стенд», получивший название «Репульсор-1» («Repulsor-1»), с диким ревом стартовал. Он ударился о крышу соседнего здания, около 2 секунд летел косо вверх под углом в 70 градусов, после чего сделал мертвую петлю, поднялся еще немного и, спикировав, упал на землю с работающим двигателем. Во время пикирования стенка камеры сгорания в одном месте прогорела, и здесь образовалось новое «сопло», за счет чего система получила вращательное движение. Ракета не развалилась только потому, что вышло все топливо. Достигнутая высота составила около 60 метров.
Работа над «Репульсором-2» началась в ту же ночь. В ходе работ был модернизирован двигатель. Кроме того, к ракете были приделаны опоры-стабилизаторы, благодаря которым отпала необходимость в пусковой направляющей.
Эта модель была подготовлена к запуску 23 мая 1931 года. На этот раз «Репульсор» поднялся с земли, сначала медленно, а затем быстро набирая скорость. Он достиг высоты около 60 метров, затем перешел на горизонтальный полет и в таком положении, сохраняя скорость, перелетел через весь «Ракетенфлюгплатц». Самодеятельные ракетчики нашли его висящим на ветвях большого дерева на высоте 9 метров над землей, и он был совершенно разбит. Расстояние от места старта до дерева составило 600 метров.
Следующая модель «Репульсора» была построена всего за несколько дней и отличалась от предыдущих лучшими характеристиками. Два топливных бака помещались теперь на расстоянии около 10 сантиметров друг от друга и крепились двумя рядами алюминиевых скоб, выступавших на 2,5 сантиметра с каждой стороны и входивших в U-образные пазы деревянной пусковой направляющей. Донные скобы несли контейнер с парашютом. Коробка контейнера имела легко снимающуюся крышку с отверстием в центре, через которое пропускалась основная стропа парашюта; благодаря этому в момент выбрасывания парашюта из контейнера крышка его не терялась. Выбрасывание осуществлялось толстым пробковым диском с помощью небольшого заряда обычного пороха, который воспламенялся часовым механизмом. Этот механизм включался автоматически при взлете ракеты и устанавливался на такое время, которое соответствовало достижению ракетой максимальной высоты.
«Репульсор-3» был испытан в начале июня. Поднимаясь почти вертикально, ракета быстро достигла высоты в 450 метров, почти полностью израсходовав запас топлива В это время по неизвестной причине сработал часовой механизм выбрасывания парашюта. Парашют раскрылся, но ракета продолжала быстро набирать высоту. Парашют, разумеется, был разорван в клочья, а ракета поднялась еще по меньшей мере на 180 метров, но теперь уже под углом около 60°. Описав огромную дугу, ракета приземлилась за пределами «Ракетенфлюгплатц» в той же группе деревьев, где нашел свой конец «Репульсор-2».
В течение следующего месяца были запущены еще три ракеты той же модели. Все они очень хорошо взлетали, хотя недоразумения с парашютом по-прежнему имели место.
Следующим этапом стал «Репульсор-4», который оказался еще более удачной моделью, фактически эта ракета ничем не отличалась от предыдущей, но была собрана по несколько другой схеме: здесь была сознательно применена такая же направляющая ручка, что и у последних ракет Конгрева. Она устанавливалась вдоль оси ракетного двигателя. Двигатель, заключенный в небольшой пулеобразный кожух водяного охлаждения, помещался в верхней части ракеты. Две стойки и два топливных трубопровода служили станком, на котором устанавливалась ракета. На опорах крепился бак с кислородом. Бензиновый бак помещался ниже бака с кислородом, а парашютный контейнер с лопастями стабилизаторов — ниже бака с бензином.
Эта модель получила название «Одноручечный репульсор», а последующие типы именовались «двухручечными». Первый «Одноручечный репульсор», испытанный в августе 1931 года, достиг высоты около 2 километров и благополучно опустился на землю с помощью парашюта. После этого было построено еще несколько таких ракет, две из которых имели большие размеры при том же двигателе.
За все время существования «Ракетенфлюгплатц» у немецких ракетчиков была только одна значительная неудача. Это произошло при испытании большого двигателя, спроектированного в апреле 1931 года и названного в отличие от маленького «яйца» «яйцом эпиорниса». Предполагалось, что этот двигатель обеспечит тягу в 64 килограмма, а фактически он дал только 50. Во время съемки фирмой «Уфа-фильм» киножурнала, посвященного работам в «Ракетенфлюгплатц», один такой «Репульсор» порвал свой парашют, ударился в крышу соседнего сарая и последними каплями горючего поджег его. Сарай был старым и ничего ценного в нем не хранилось, но он принадлежал полицейскому участку, находившемуся напротив через улицу. Полиция нагрянула в «Ракетенфлюгплатц», и дальнейшее экспериментирование было тотчас же запрещено. Началось долгое разбирательство дела, закончившееся показательным запуском ракеты (только для полиции), после чего запрещение было снято.
К концу 1933 года в «Ракетенфлюгплатц» было осуществлено 87 пусков ракет и 270 запусков двигателей на стенде. В роковую для всех зиму 1933 года к власти пришел Адольф Гитлер. Именно этой зимой количество членов «Немецкого ракетного общества» сократилось менее чем до 300 человек; многие из них лишились средств к существованию.
Между тем политическая обстановка в Германии ухудшалась изо дня в день. Среди руководителей «Общества» наметился раскол, причиной которого были политические разногласия.
В поисках дополнительных средств Небель решил сотрудничать с немецкой армией. Для этого он направил в соответствующие инстанции «Секретный меморандум о дальнобойной ракетной артиллерии». Было намечено провести показ ракеты Небеля на армейском испытательном полигоне в Куммерсдорфе, близ Берлина. Армейские специалисты потребовали, чтобы ракета выбросила красное пламя в вершине траектории. «Репульсор» и в этот раз сработал вполне удовлетворительно, но вскоре после старта отклонился от вертикального направления. Однако армейцы отнеслись к Небелю весьма пренебрежительно — получить крупный заказ от армии ему не удалось.
Последним изобретением «Общества» в «Ракетенфлюгплатц» была так называемая пилотируемая ракета, или «Пилот-ракета». По проекту она должна была иметь огромные для того времени размеры (высота — около 7,62 метра) и мощный ракетный двигатель с тягой до 600 килограммов.
8 одном отсеке должны были помещаться кабина с пассажиром и топливные баки, а в другом — двигатели и парашют. Предполагалось, что ракета достигнет высоты 1000 метров, где будет раскрыт парашют.
Первоначально члены «Общества» решили построить ракету той же схемы, но меньших размеров: она должна была иметь в длину 4,5 метра и приводиться в движение двигателем с тягой в 200 килограммов.
Работа началась в рождественские праздники 1932 года. Были спроектированы и построены двигатели, а также новый испытательный стенд для тысячекилограммовых ракет. Первый запуск непилотируемого прототипа ракеты был запланирован на 9 июня 1933 года. Поблизости от Магдебурга была сооружена большая пусковая направляющая высотой
9 метров. Утром назначенного дня ракету подготовили к запуску; она начала медленно подниматься, но, прежде чем достигла верхней части направляющей, остановилась и поползла вниз. Тяга была недостаточной, но причину этого обнаружить не удалось. Следующая попытка запустить ракету сорвалась из-за течи в сальнике. Двигатель получил только четвертую часть необходимого ему топлива; он ревел в течение целых 2 минут (вместо 30 секунд), но ракета не двигалась. Еще одно испытание, 13 июня, также кончилось неудачей. Когда ракета поднялась на высоту 2 метров, выпал запорный винт топливного бака — ракета рухнула на землю почти без топлива
Замена отдельных конструктивных элементов не помогла. Когда 29 июня ракету удалось запустить, один из роликов сошел с направляющего рельса и застрял. Он, разумеется, был сорван, но из-за этого ракета взлетела почти горизонтально. Быстро теряя высоту, она упала плашмя на землю в 300 метрах от пусковой установки.
Конец «Ракетенфлюгплатц» был весьма печальным. Однажды на территорию, принадлежащую «Немецкому ракетному обществу», нагрянула большая группа молодых людей в серо-голубой форме, назвавших себя представителями «Дейче люфтвахт», которые заявили, что это место передано им в качестве учебного плаца.
Примерно в то же время в Куммерсдорфе, недалеко от Берлина, молодой инженер Вернер фон Браун начал работу над проектом, условно обозначенным «А-1».
Что бы ни говорили сторонники теории исторического детерминизма, мировая история демонстрирует нам множество примеров того, как совершенно случайные факторы влияют на ее ход. Так, первые большие ракеты появились у немцев только потому, что в Версальском договоре, накладывающем ограничения на виды войск и вооружений, которые могла иметь Германия после поражения в Первой мировой войне, ничего не было сказано о ракетах. А созданы они были в местечке Пенемюнде, о существовании которого главный конструктор этих ракет знал только потому, что его отец когда-то охотился там на уток.
Немецкая сухопутная армия, а точнее, специалисты отдела баллистики и боеприпасов управления вооружений сухопутных войск много думали о ракетах. Жидкостные ракеты давали, по крайней мере теоретически, возможность стрелять дальше, чем это делала артиллерия. К тому же теория утверждала, что ракеты в отличие от самолета будут практически неуязвимы в полете. Именно этими обстоятельствами и было продиктовано решение, принятое в 1929 году, о возложении на отдел баллистики ответственности за разработку ракет.
Не будет большим преувеличением сказать, что задача, поставленная отделу, была почти невыполнима. Ведь не имелось ничего, чем можно было бы руководствоваться военным инженерам при конструировании ракет. Ни один технический институт в Германии не вел работу в области ракет, не занималась этим и промышленность. Сотрудник отдела баллистики капитан Горштиг, ведавший организационными вопросами, долго не мог найти такого изобретателя, который при значительной финансовой помощи мог бы дать какое-либо законченное изобретение.
В 1930 году в помощь Горштигу был назначен новый человек — профессиональный офицер, служивший в тяжелой артиллерии во время Первой мировой войны. Этим человеком был гауптман Вальтер Дорнбергер. Однажды, присутствуя на испытательных запусках в «Ракетенфлюгплатц», Дорнбергер уговорил доктора Хейландта, директора фирмы «Ассоциация по применению промышленных газов», на которого некогда работал Макс Валье, сконструировать небольшой жидкостный ракетный двигатель, чтобы применять его для испытания различных топливных смесей. Когда разработка началась, Дорнбергер понял, что управлению вооружений так или иначе придется взять на себя выполнение этой задачи и перенести работы на свои испытательные стенды. Эта идея получила одобрение, и вскоре на артиллерийском полигоне в Куммерсдорфе, в 27 километрах от Берлина, была создана новая испытательная станция. Она называлась экспериментальной станцией «Куммерсдорф — Запад». Начальником ее был назначен Дорнбергер, получивший к тому времени звание оберста.
Первым штатским служащим станции стал Вернер фон Браун, вторым — способный и талантливый механик Генрих Грюнов. В ноябре 1932 года к ним присоединился и специалист по ракетным двигателям Вальтер Ридель.
Деятельность экспериментальной станции «Куммерсдорф — Запад» началась с постройки здания для испытательного стенда В декабре 1932 года на стенде был установлен двигатель, подлежавший испытанию. Однако первая же попытка запустить его окончилась неудачей — двигатель взорвался. Последовал полный разочарований год тяжелой работы: ракетные двигатели прогорали в критических точках; пламя факела шло в обратном направлении и воспламеняло топливные форсунки; встречались большие механические трудности. Но между этими неудачами случались и успешные испытательные запуски, которые показывали, что данную ракету можно заставить работать. Наконец в 1933 году наступило время проектирования полноразмерной ракеты. Условно она была названа «Агрегат-1» («Agregat-1»), или «А-1».
Дорнбергер считал, что ракета должна стабилизироваться вращением. Поэтому было решено создавать ракету с вращающейся боевой частью и невращающимися баками. В ракете «А-1» вращающаяся секция весом 38,5 килограмма помещалась в носовой части длиной 1402 миллиметра и диаметром 305 миллиметров. Около 38,5 килограмма топлива должно было подаваться под давлением сжатого азота из топливных баков в камеру сгорания двигателя, развивавшего тягу порядка 295 килограммов. Камера сгорания в хвостовой части ракеты была встроена в бак с горючим. Вращающаяся часть, изготовленная по типу ротора трехфазного электромотора, должна была раскручиваться до максимальной скорости перед самым запуском. Ракету «А-1» предполагалось запускать вертикально с направляющей высотой в несколько метров.
Согласно первому проекту, стартовый вес ракеты «А-1» составлял 150 килограммов. Соответственно этому был разработан и двигатель, но в процессе его доводки и работы над аэродинамической формой ракеты тяга двигателя увеличилась до 1000 килограммов. Разумеется, для такого двигателя, была нужна и новая ракета с более вместительными баками. Это означало, что нужен новый испытательный стенд, так как старый оказался для нового двигателя слишком мал.
К декабрю 1934 года были изготовлены две новые ракеты типа «А-2», названные в шутку «Макс» и «Мориц» по именам популярных в Германии комиков. Обе они были перевезены на остров Боркум в Северном море и запущены незадолго до рождественских праздников. Они поднялись на высоту 2000 метров, причем тяга обеспечивалась не новым, а старым 300-килограммовым двигателем.
Следующая ракета была названа «А-3». Территория испытательной станции в Куммерсдорфе оказалась недостаточной для обеспечения новых работ. Необходимо было сменить место, и после недолгих поисков фон Браун нашел его. Этим местом стал остров Узедом на Балтике, расположенный недалеко от устья реки Пене.
К этому времени уже был спроектирован, построен, испытан и окончательно доработан новый двигатель с тягой в 1500 килограммов. В марте 1936 года генерал Фрич приехал в Куммерсдорф и, увидев воочию работу экспериментальной станции, дал новые ассигнования. Затем в апреле 1936 года у генерала Кессельринга состоялось совещание, результатом которого явилось решение создать новую испытательную станцию. В тот же день советник Министерства авиации выехал в город Вольгаст, муниципалитету которого принадлежала территория Пенемюнде, и сообщил о том, что купил ее.
Хотя новая станция и получила название армейской экспериментальной станции «Пенемюнде», фактически равноправными хозяевами ее были сухопутная армия и ВВС. Армейцам отводилась лесистая часть острова восточнее озера Кельпин, ее назвали «Пенемюнде — Восток». Представители ВВС облюбовали себе пологий участок местности к северу от озера, где можно было построить аэродром, эта часть получила название «Пенемюнде — Запад». Станция «Пенемюнде — Восток» находилась в подчинении Управления вооружений сухопутных войск, а «Пенемюнде — Запад» — в ведении отдела новых разработок Министерства авиации.
В то время как строился исследовательский центр в Пенемюнде приближалась к концу и работа над ракетами «А-3». Ракета «А-3» имела высоту 6,5 метра и диаметр 70 сантиметров. Ее носовая часть была заполнена батареями. Под ними размещался отсек с приборами, в число которых входили барограф и термограф с миниатюрной автоматической кинокамерой, фотографировавшей в полете их показания. Имелось также аварийное устройство отсечки топлива, действовавшее с помощью сигнала по радио. Ниже отсека с приборами был расположен бак с кислородом, внутри которого помещался меньший бак с жидким азотом. Затем шел отсек с парашютом, потом бак с горючим и, наконец, ракетный двигатель. Четыре пера хвостового стабилизатора своими нижними концами крепились к кольцу из пластмассы диаметром 254 миллиметра. Полный стартовый вес ракеты составлял 750 килограммов.
Ракета «А-3» была снабжена двигательной установкой тягой 1500 килограммов. Как и у ракеты «А-2», двигатель работал на жидком кислороде и спирте, однако баллон со сжатым азотом, который применялся для подачи топливных компонентов под давлением в ракете «А-2», был заменен системой, использующей жидкий азот, выпариваемый с помощью группы тепловых сопротивлений. Это позволило значительно снизить вес системы.
Кроме того, в ракете «А-3» имелась гиростабилизированная платформа с акселерометрами для корректирования ракеты в полете по тангажу и по курсу, а также электрические сервомоторы и молибденовые газовые рули. Система наведения и управления основывалась на идеях некоего Войкова, который в то время являлся «экспертом № 1» военно-морского флота в области корабельного гиростабилизированного оборудования для управления огнем.
Испытательные запуски трех ракет «А-3» были проведены осенью 1937 года. Хотя двигательная установка работала в соответствии с расчетами, система наведения во всех трех запусках не оправдала возлагавшихся на нее надежд. Проверка показала, что газовые рули «А-3» слишком малы, реакция сервосистемы на сигнал управления чересчур замедленна, датчики условий полета и ввод данных в систему управления весьма несовершенны.
Создание газовых рулей имеет длинную историю. Уже давно было ясно, что аэродинамические рули, устанавливаемые в воздушном потоке, не могут решить задачу регулирования направления движения ракеты на всей ее траектории. Плотность воздуха достаточна для работы аэродинамических поверхностей управления только на высоте не более 15 километров. Но поскольку предполагалось, что ракеты будут выходить из плотных слоев атмосферы, необходимо было придумать нечто новое.
К тому времени было уже известно, что если воздушный поток крайне непостоянен и изменчив как по скорости, так и по направлению, то струя истекающих из ракеты газов весьма постоянна по своим характеристикам. Это навело на мысль, что поверхности управления можно установить в струе истекающих газов. Впервые подобное предложил еще Циолковский. Позднее в своей работе эту проблему весьма подробно рассмотрел Оберт. Он особенно подчеркивал, что «газовые рули» должны действовать путем сжатия этой струи своими плоскими поверхностями.
Уже в то время, когда ракета «А-3» находилась в стадии проектирования (лето 1936 года), Вернер фон Браун и Вальтер Ридель задумали создать гораздо большую ракету, которая в дальнейшем стала известна как ракета «А-4». Намеченная для этой ракеты дальность полета в 260 километров означала, что ракета должна иметь максимальную скорость порядка 1600 м/с. Вес боевой части определял сухой вес ракеты, и он должен был примерно равняться 3 тоннам. Для достижения необходимой максимальной скорости было нужно, чтобы вес топлива в два раза превышал сухой вес ракеты. Таким образом, стартовый вес ракеты следовало довести до 12 тонн, а это, в свою очередь, означало, что тяга ракетного двигателя должна составлять приблизительно 25 тонн.
По этим данным, можно было бы спроектировать большое количество совершенно разных ракет, но выбор габаритов определился довольно простым образом: требовалось доставить новое оружие вплотную к линии фронта, а следовательно, максимально допустимые габариты диктовались шириной туннелей и кривизной закруглений железнодорожной колеи.
В первом приближении характеристики ракеты «А-4» были обоснованы еще до того, как закончена ракета «А-3». Поэтому, прежде чем продвинуть эту большую работу сколько-нибудь дальше, необходимо было довести ракету «А-3» до приемлемого уровня. Практически же даже при сохранении прежних габаритов следовало создавать новую ракету. Старое название «А-3» также не годилось, и новая ракета получила обозначение «А-5».
Ракета «А-5» имела первый вариант двигателя ракеты «А-3» с большими графитовыми газовыми рулями и усовершенствованным корпусом, которому была придана почти такая же аэродинамическая форма, как и у более поздней ракеты «А-4». И что важнее всего — ракета была снабжена принципиально новой системой управления.

Принципиальная схема двигателя ракеты «Фау-2»
1 — бак с перекисью водорода; 2 — бачок с перманганатом натрия (катализатором для разложения перекиси водорода); 3 — баллоны со сжатым воздухом; 4 — парогазогенератор; 5 — турбина; 6 — выхлопной патрубок отработанного парогаза; 7 — насос горючего; 8 — насос окислителя; 9 — редуктор; 10 — трубопроводы подачи кислорода; 11 — камера сгорания; 12 — форкамеры.
Первая ракета «А-5» была запущена осенью 1938 года, но пока без системы управления. Только через год, когда уже шла война с Польшей, «А-5» стартовала с полным оборудованием и безупречно поднялась на высоту 12 километров. Всего было сделано 25 пусков ракет «А-5»: сначала они запускались вертикально, а затем — по наклонной траектории. Все ракеты имели по два парашюта: вытяжной парашют, который мог раскрываться даже на околозвуковых скоростях, и основной парашют, вытягивавшийся через 10 секунд после первого, уменьшали скорость падения примерно до 14 м/с. Ракеты «А-5», как и ракеты «А-3», запускались с острова Грейфсвальдер-ойе. Система возвращения ракет на землю с помощью парашютов работала вполне надежно, поэтому многие ракеты удавалось запускать несколько раз.
К этому времени основные силы Пенемюнде были сосредоточены на «Большой ракете» — той самой ракете, которая преждевременно была названа «Агрегат-4». Именно она позднее стала называться ракетой «Фау-2» — «ракетой Гитлера».
Первые образцы ракеты были изготовлены летом 1942 года. Они были почти на целую тонну тяжелее ракет «А-4», впоследствии запущенных в серийное производство. В законченном виде ракета выглядела следующим образом.
Ракета «А-4» состояла из четырех отсеков. Носовая часть представляла собой боевую головку весом около 1 тонны, сделанную из мягкой стали толщиной 6 миллиметров и наполненную аматолом. Выбор этого взрывчатого вещества объяснялся его малой чувствительностью к тепловым и ударным воздействиям. Ниже боевой головки находился приборный отсек, в котором наряду с аппаратурой помещалось несколько стальных цилиндров со сжатым азотом, применявшимся главным образом для повышения давления в баке с горючим. Ниже приборного располагался топливный отсек — самая объемистая и тяжелая часть ракеты. При полной заправке на топливный отсек приходилось три четверти веса ракеты. Бак со спиртом помещался наверху; из него через центр бака с кислородом проходил трубопровод, подававший горючее в камеру сгорания. Пространство между топливными баками и внешней оболочкой ракеты, а также полости между обоими баками заполнялись стекловолокном. Заправка ракеты жидким кислородом производилась перед самым пуском, так как потери кислорода за счет испарения составляли 2 килограмма в минуту. Поэтому даже 20-минутный интервал между заправкой и пуском приводил к потере около 40 килограммов жидкого кислорода. Это считалось (и считается) допустимым, но более длительная задержка требовала дозаправки бака с кислородом.
Самой важной новинкой в этой ракете было наличие турбонасосного агрегата для подачи компонентов топлива. В небольших ракетах проблема подачи жидких топлив в ракетный двигатель решалась путем наддува баков. При этом требуемое давление составляло около 21 атмосферы. В большой же ракете подобная система неприменима. Задача обеспечения давления для подачи топлива в ней может быть выполнена только специальными насосами.

Схема ракеты «Фау-2» («А-4»)
В то время построить такой насос казалось почти невозможным, тем более что он должен был выполнять ряд функций: подавать компоненты топлива, одним из которых являлся сжиженный газ, под давлением порядка 21 атмосфер и перекачивать более 190 литров топлива в секунду. Кроме того, ему следовало быть достаточно простым по конструкции и очень легким, а в довершение всего насос должен был запускаться на полную мощность в течение очень короткого (6 секунд) промежутка времени. Когда фон Браун излагал эти требования персоналу завода, выпускающего насосы, он невольно ожидал возражений. Однако оказалось, что требуемый насос напоминает один из видов центробежного пожарного насоса.
Но, разумеется, любой насос нуждается в источнике энергии, то есть должен чем-то приводиться в движение. Для этого были использованы концентрированная перекись водорода и раствор перманганата, соединяя которые можно было быстро получить определенное количество парогаза постоянной температуры. Агрегат турбонасоса, парогазогенератор для турбины и два небольших бака для перекиси водорода и перманганата калия помещались в одном отсеке с двигательной установкой. Отработанный парогаз, пройдя через турбину, все еще оставался горячим и мог совершить дополнительную работу. Поэтому его направляли в теплообменник, где он нагревал некоторое количество жидкого кислорода. Поступая обратно в бак, этот кислород создавал там небольшой наддув, что несколько облегчало работу турбонасосного агрегата и одновременно предупреждало сплющивание стенок бака, когда он становился пустым. Эту же работу в линии подачи топлива выполнял сжатый азот.
Из турбонасосного агрегата оба жидких компонента топлива под давлением подавались в двигатель. Кислород поступал непосредственно к 18 форсункам, расположенным в головке двигателя. Спирт, прежде чем попасть к форсункам, проходил через рубашку охлаждения двигателя.
Для пуска ракета «А-4» устанавливалась на стартовом столе, представлявшем собой массивное стальное кольцо, укрепленное на четырех стойках. Кольцо должно было иметь строго горизонтальное положение, чтобы ракета стояла на столе в вертикальном положении. Ниже стального кольца по оси ракеты находился дефлектор (отражатель) реактивной струи, который представлял собой пирамиду из листовой стали, разбивавшей газовую струю ракетного двигателя в момент старта Для повышения живучести дефлектора его наполняли водой, поглощавшей часть тепла.
Заправка ракеты производилась после ее установки на стартовом столе. Все это время электрооборудование ракеты работало от внешнего источника питания, ток от которого подавался по кабелю к разрывному штекеру, удерживаемому в специальном гнезде на корпусе ракеты с помощью электромагнита. Штекер с кабелем отсоединялся от ракеты в момент старта. Воспламенение в ракетном двигателе осуществлялось с помощью простого пиротехнического устройства, вращающегося в горизонтальной плоскости внутри камеры сгорания. Из-за крестообразной формы оно было названо «воспламенительным крестом». Когда двигатель начинал работать, этот «крест» сжигался струей истекающих газов.
Запуск ракеты «А-4» осуществлялся в три этапа. Сначала воспламенялось пиротехническое устройство. Когда оно сгорало, открывались клапаны, и спирт и кислород первое время попадали в камеру сгорания только под действием силы тяжести, поскольку баки помещались над двигателем. Немцы называли этот этап «малой» или «предварительной» ступенью пуска.
На «предварительной» ступени двигатель работал с типичным оглушающим шумом, похожим на шум водопада; пламя, разбиваемое пирамидальным дефлектором, разбрасывалось во все стороны на много метров. Тяга составляла около 7 тонн, и этого, конечно, было недостаточно, чтобы поднять ракету, весящую почти в два раза больше. Но целью «предварительной» ступени являлся не действительный пуск ракеты, а показ того, что двигатель работает нормально. Если двигатель функционировал без перебоев, тут же включался парогазогенератор и начинал работать турбонасосный агрегат, создававший необходимое давление для подачи компонентов топлива в камеру сгорания. Чтобы поднять это давление до уровня, обеспечивающего переход к «главной ступени пуска», требовалось около 3 секунд. За это время резко увеличивалось пламя, вырывающееся из сопла двигателя, нарастал шум, а тяга поднималась с 7 до 27 тонн, заставляя ракету оторваться от земли.
Самым критическим периодом считались первые секунды полета, когда скорость была еще небольшой и ракета оказывалась весьма неустойчивой. В это время задачу балансировки ракеты выполняли газовые рули. Затем, когда скорость ракеты возрастала, аэродинамические стабилизаторы помогали газовым рулям, но дальше ракета поднималась на такие высоты, где окружающий воздух был слишком разреженным, и поэтому задача стабилизации ракеты опять ложилась на газовые рули. При вертикальном запуске газовые рули должны были только выравнивать ракету и держать ее в вертикальном положении, но при запуске по цели ракету приходилось еще на активном участке траектории наклонять в направлении цели. В последнем случае ракета оставалась в строго вертикальном положении только в течение первых четырех секунд, затем она наклонялась. Звуковой барьер ракета преодолевала через 25 секунд после старта, еще в период выведения ракеты на заданную траекторию. Этот период заканчивался на 54-й секунде. В течение следующих 8-10 секунд ракета продолжала движение по восходящей ветви наклонной и прямолинейной траектории.
К лету 1942 года первая небольшая серия ракет «А-4» была готова к летным испытаниям. К этому времени станция Пенемюнде уже представляла собой очень крупное предприятие, настолько крупное, что пришлось разделить «Пенемюнде — Восток» на две секции. Одна секция, в районе озера Кельпин, получила наименование «Пенемюнде — Север». Она занималась непосредственной разработкой ракет. Другая — на полпути между секцией «Пенемюнде — Север» и деревней Карлсхаген — была известна как производственно-экспериментальные цехи станции «Пенемюнде — Восток». Участок испытательной станции германских ВВС сохранял свое наименование «Пенемюнде — Запад».
Днем первого пуска ракеты «А-4» стало 13 июня 1942 года. После тщательной проверки ракеты и ее двигателя раздалась команда: «Внимание! Запал! Первая ступень!» И немного погодя: «Главная ступень!» Со страшным грохотом ракета «А-4» поднялась в воздух. Однако стабилизирована она была плохо; сразу получив крен, ракета начала совершать странные колебательные движения. Некоторое время ее шум был слышен над облаками, затем наступила тишина, а вслед за этим из слоя низких облаков появилась падающая ракета. Она была без хвостовых стабилизаторов и потому летела, кувыркаясь. Упав в море, ракета взорвалась и затонула.
Вторая ракета была запущена 16 августа. Сначала все шло хорошо, но потом оторвался носовой конус. Неудачи с двумя первыми ракетами «А-4» заставили инженеров и ученых разработать и провести серию всевозможных стендовых испытаний, прежде чем запускать третью ракету.

Старт ракеты «Фау-2»
Испытание ее состоялось 3 октября 1942 года. День был ясный. Время запуска — полдень. Наблюдателям было видно, как вдали в воздух поднялось огромное облако пыли и песка, из которого через мгновение вырвалась ракета и, пролетев 4,5 секунды вертикально вверх, перешла на наклонную траекторию, в направлении на северо-восток. Ракета летела над Балтийским морем параллельно береговой линии на безопасном удалении от него. Голос из громкоговорителя мерно отсчитывал секунды после старта: «…восемнадцать, девятнадцать, двадцать…» На 21-й секунде ракета превысила скорость звука. Она была хорошо видна на фоне голубого неба. После 40-й секунды за ракетой появился белый инверсионный след, оставляемый конденсированными парами воды. Через 58 секунд после старта подача топлива в двигатель ракеты была прекращена сигналом по радио. Двигатель перестал работать. Но по инерции ракета поднялась еще выше — примерно до 48 километров. Падение произошло лишь на 296-й секунде после старта и, по наблюдениям, ракета упала в море в целом виде. Дальность полета этой ракеты составила 190 километров.
26 мая 1943 года Пенемюнде посетила большая группа членов комиссии по оружию дальнего действия. Они прибыли для того, чтобы посмотреть демонстрацию моделей и принять соответствующее решение.
Дело в том, что начиная с 1942 года станция «Пенемюнде — Запад» осуществляла разработку еще одной системы оружия дальнего действия под названием «Fi-103» («Fieselег»), которой благодаря Министерству пропаганды Геббельса позднее было присвоено наименование: самолет-снаряд «Фау-1» («V-1» от немецкого слова «Vergeltungswaffen» — «Оружие возмездия»).
В техническом отношении самолет-снаряд «Фау-1» конструкции немецкого инженера Фритца Госслау был точной копией морской торпеды. После пуска снаряда он летел с помощью автопилота по заданному курсу и на заранее определенной высоте. «Фау-1» имел фюзеляж длиной 7,8 метра, в носовой части которого помещалась боеголовка с 1000 килограммами взрывчатого вещества За боеголовкой располагался топливный бак с 80-октановым бензином. Затем шли два оплетенных проволокой сферических стальных баллона сжатого воздуха для обеспечения работы рулей и других механизмов. Хвостовая часть была занята упрощенным автопилотом, который удерживал самолет-снаряд на прямом курсе и на заданной высоте. Размах крыльев составлял 540 сантиметров. Самой интересной новинкой был пульсирующий воздушно-реактивный двигатель, установленный в задней части фюзеляжа и похожий на ствол старомодной пушки.
Пульсирующие воздушно-реактивные двигатели «As014», производившиеся фирмой «Аргус» («Argus»), представляли собой стальные трубы, открытые с задней части и закрытые спереди пластинчатыми пружинными клапанами, открывавшимися под давлением встречного потока воздуха. Когда воздух, открыв клапаны решетки, входил в трубу, здесь создавалось повышенное давление; одновременно сюда впрыскивалось топливо; происходила вспышка, в результате которой расширившиеся газы действовали на клапаны, закрывая их, и создавали импульс тяги. После того как продукты сгорания выбрасывались через реактивное сопло, в камере сгорания создавалось пониженное давление и воздух снова открывал клапаны; начинался новый цикл работы двигателя. Расход топлива составлял 2,35 литра на километр. Бак вмещал около 570 литров бензина.
Пульсирующий воздушно-реактивный двигатель обязательно требует предварительного разгона до скорости минимум 240 км/ч. Для этого использовалась наклонная пусковая установка с трубой, имеющей продольный паз. Поршень, двигающийся в этой трубе, был снабжен выступом, которым он сцеплялся с самолетом-снарядом при разгоне. Поршень приводился в движение за счет газов, образующихся при распаде перекиси водорода. Как только пульсирующий воздушно-реактивный двигатель начинал работать, скорость самолета-снаряда возрастала до 580 км/ч. «Фау-1» имел часовой механизм, с помощью которого осуществлялось «наведение» на цель; он срабатывал, когда кончался запас топлива, и самолет-снаряд пикировал вниз.
Комиссия по оружию дальнего действия должна была сделать выбор между «Fi-103» и «А-4». Оба они представляли собой два совершенно отличных друг от друга типа вооружения. Так, самолету-снаряду «Fi-103» атмосфера служила одновременно и аэродинамической опорой и источником окислителя (кислорода), необходимого для сгорания топлива. В отличие от него ракета «А-4» была баллистическим снарядом, который летел по траектории, схожей с траекторией артиллерийского снаряда. Крылатый снаряд стоил дешевле, чем баллистический, примерно в 10 раз, но легко сбивался зенитными орудиями, ракетами и истребителями-перехватчиками.
Вес боевой головки был почти одинаковым; примерно так же обстояло дело и с дальностью: предполагалось, что оба снаряда будут иметь дальность полета порядка 320 километров, Позднее выяснилось, что средняя дальность самолета-снаряда «Фау-1» составляла около 240 километров, в то время как средняя дальность полета ракеты «А-4» равнялась 306 километрам.
Прежде чем комиссия приступила к обсуждению данного вопроса, оба типа снарядов были ей продемонстрированы в действии. Две ракеты «А-4» успешно выдержали испытание, показав дальность 260 километров. Один самолет-снаряд «Fi-103» поднялся хорошо, но разбился после непродолжительного полета; второй вообще не сработал. Тем не менее комиссия решила рекомендовать разработку и производство обеих систем при условии, что в боевых условиях они будут применяться во взаимодействии.
Через два дня после этого Дорнбергер был вызван на аудиенцию к Гитлеру, которая состоялась 7 июля 1943 года в Растенбурге (Восточная Пруссия). Гитлеру были показаны фильм о запуске снарядов, макет большого бункера, строившегося в Ваттене, а также модели ракеты и ее средств транспортировки: специальной повозки «видальвагена» и самоходного лафета «мейлервагена». После этого Гитлер отдал распоряжение считать Пенемюнде самым важным объектом, но в то же время потребовал, чтобы боевая головка ракеты весила не менее 10 тонн.
И тут в игру вступили союзники. Вечером 17 августа 1943 года немцы узнали о концентрации крупных сил английской бомбардировочной авиации над Балтийским морем. Над островом Рюген английские самолеты, вместо того чтобы повернуть на юг в направлении Берлина, изменили курс на юго-восток. Этой ночью Пенемюнде подверглось налету более 300 тяжелых бомбардировщиков, сбросивших свыше 1500 тонн фугасных и огромное количество зажигательных бомб. Целями бомбардировки были испытательные стенды, производственные цехи и поселок на острове Узедом. Испытательная станция «Пенемюнде — Запад» бомбардировке не подверглась, весь удар пришелся по району гавани с электростанцией и заводом по производству жидкого кислорода. Потери в людях составили 735 человек; среди них погибли доктор Вальтер Тиль, руководивший разработкой двигателей, и главный инженер Вальтер. Сооружениям также был нанесен значительный ущерб.
Однако Пенемюнде продолжало работать, приближая день запуска в производство принятых на вооружение ракет.
В начале июня 1944 года в Лондоне было получено донесение о том, что на французское побережье Ла-Манша доставлены немецкие управляемые снаряды. Английские летчики сообщали, что вокруг двух сооружений, напоминавших лыжи, замечена большая активность противника. Вечером 12 июня немецкие дальнобойные пушки начали обстрел английской территории через Ла-Манш, вероятно, с целью отвлечь внимание англичан от подготовки к запуску самолетов-снарядов. В 4 часа ночи обстрел прекратился. Через несколько минут над наблюдательным пунктом в Кенте был замечен странный «самолет», издававший резкий свистящий звук и испускавший яркий свет из хвостовой части. Через 18 минут «самолет» с оглушительным взрывом упал на землю в Суонскоуме, близ Грейвсенда. В течение последующего часа еще три таких «самолета» упали в Какфилде, Бетнал-Грине и в Плэтте. В результате этих взрывов в Бетнал-Грине было убито шесть и ранено девять человек. Кроме того, был разрушен железнодорожный мост.
Это стало началом так называемого «Роботблица» — войны механизмов.
В ходе этой войны по Англии было выпущено 8070 самолетов-снарядов «Фау-1». Из этого количества, по английским данным, 7488 штук были замечены службой наблюдения, а 2420 достигли района целей. Истребители английской ПВО уничтожили 1847 «Фау-1», расстреливая их бортовым оружием или сбивая спутным потоком; зенитная артиллерия уничтожила 1878 самолетов-снарядов, об аэростаты заграждения разбилось 232 снаряда. В целом было сбито почти 53 % всех самолетов-снарядов «Фау-1», выпущенных по Лондону, и только 32 % наблюдаемых самолетов-снарядов прорвалось к району целей.
Но даже этим количеством самолетов-снарядов немцы нанесли Англии большой ущерб. Было уничтожено 24491 жилое здание, 52293 постройки стали непригодными для жилья. Погибли 5864 человека, 17197 были тяжело ранены.
Общие данные о перехваченных самолетах-снарядах не могут дать полного представления о масштабах борьбы, развернувшейся против немецких реактивных снарядов. В течение первого периода «Роботблица» англичане фактически не знали, как защищаться от нового оружия, не было у них и соответствующей организации. Зенитной артиллерии и истребителям приходилось действовать против самолетов-снарядов осторожно, чтобы не мешать друг другу. В конце концов на артиллерию была возложена задача прикрытия внешнего оборонительного пояса, а на истребительную авиацию — внутреннего.
К сентябрю 1944 года ракеты «Фау-2» (так с определенного момента стала называться ракета «А-4»), организованные в подвижные батареи, были готовы для боевого применения.
Интересно отметить, что впервые ракеты «Фау-2» были выпущены не по Лондону, а по Парижу. 6 сентября 1944 года в направлении Парижа были запущены две ракеты «Фау-2». Одна из них не долетела до цели, другая же разорвалась в городе, хотя об этом нигде не сообщалось. Следующие две ракеты были запущены по Лондону с перекрестка шоссе на окраине голландской столицы.
В официальном английском докладе этот первый обстрел Лондона ракетами «Фау-2» описан следующим образом:
«Приблизительно в 18 часов 40 минут 8 сентября 1944 года лондонцы, возвращавшиеся домой с работы, были сильно удивлены резким звуком, который очень походил на отдаленные раскаты грома. В 18 часов 43 минуты в Чисуике упала и взорвалась ракета, убив троих и тяжело ранив еще около десяти человек. Через 16 секунд после первой недалеко от Эппинга упала другая ракета, разрушив несколько деревянных домов, но не вызвав никаких жертв. В течение дальнейших десяти дней ракеты продолжали падать с интенсивностью не более двух ракет в день. 17 сентября союзники предприняли воздушно-десантную операцию в низовьях Рейна у Арнема. Вследствие этого германское верховное командование передвинуло ракетные части в восточном на правлении, и со следующего дня ракетные удары по Лондону временно прекратились. За этот период по Англии было выпущено 26 ракет, причем 13 из них упали внутри лондонского района обороны».
«Ракетное наступление» немцев на Англию закончилось лишь 27 марта 1945 года в 16 часов 45 минут, когда ракета с № 1115 упала в районе Орпингтона, в графстве Кент. За семь месяцев немцы выпустили в направлении Лондона по меньшей мере 1300 и по Нориджу около 40 ракет «Фау-2». Из них 518 упало в пределах лондонского района обороны, но ни одна не взорвалась в черте Нориджа. В Лондоне от ракет погибло 2511 человек, а 5869 человек были тяжело ранены. В других районах потери составили 213 человек убитыми и 598 тяжело раненными. В последний раз боевые ракеты «Фау-2» были применены во время сражения за Антверпен.
Помимо самолета-снаряда «Фау-1» и баллистической ракеты «Фау-2», в «Роботблице» была использована первая серийная многоступенчатая ракета «Рейнботе», разработанная фирмой «Рейнметалл-Борзиг». Эта ракета имела длину свыше 11 метров и представляла собой сочетание трех ракет со стартовым ракетным ускорителем. Запуск этой ракеты напоминал стрельбу из артиллерийского орудия, так как в качестве пусковой направляющей использовалась стрела «мейлервагена». Ускоритель и все три ступени работали на твердом топливе — дигликольдинитрате; каждая ступень своей головной частью сочленялась с открытым концом трубчатого корпуса предыдущей ступени. Когда двигатель нижней (первой) ступени прекращал работать, воспламенялась специальная смесь пороха и нитроглицерина, которая поджигала заряд дымного пороха. Последний воспламенял следующую ступень, которая в этот момент отсоединялась от использованной первой ступени. Третья ступень ракеты «Рейнботе» имела длину около 4 метров и диаметр 198 миллиметров; она развивала скорость до 1600 м/с уже через 25,6 секунды после старта всей системы. Однако максимальная дальность действия ракеты «Рейнботе» оставалась сравнительно небольшой — всего 220 километров.

Первая многоступенчатая ракета «Рейнботе
Тем не менее эта дальность для ракеты на твердом топливе в те годы была просто удивительной. Ее достоинства значительно снижало то, что она несла весьма небольшой боевой заряд — всего 40 килограммов. Несмотря на этот факт, ракеты «Рейнботе» были по настоянию Гитлера использованы на фронте. В ноябре 1944 года из голландского городка Зволле по Антверпену было выпущено 20 ракет «Рейнботе». В условиях, когда по городу одновременно вели огонь многие другие огневые средства, действие ракет «Рейнботе» осталось почти незамеченным.
Порт Свинемюнде и остров Узедом вместе с Пенемюнде были заняты 5 мая 1945 года войсками советского 2-го Белорусского фронта под командованием маршала Рокоссовского. Само Пенемюнде взяли штурмом подразделения майора Анатолия Вавилова, на которого была возложена ответственность за сохранность оставшегося оборудования. Немецкие конструкторы и проектировщики эвакуировались в Баварию еще до прихода русских и провели там несколько тревожных недель.
Наконец, когда стало ясно, что все окружающие районы заняты американскими войсками, младший брат Вернера фон Брауна Магнус был послан отыскать кого-либо из американцев, кому персонал исследовательского ракетного центра мог сдаться официально.
В это время американские войска захватили подземный ракетный завод, расположенный близ Нидерзаксверфена — на территории, которая по соглашению должна была стать русской зоной оккупации. Разумеется, переместить подземный завод было невозможно. Однако к тому времени, когда союзные офицеры приступили к исполнению необходимых формальностей для передачи завода русским, около 300 товарных вагонов, груженных оборудованием и деталями ракет «Фау-2», уже находились на пути в Западное полушарие. Американцы позаботились и о том, чтобы заполучить себе немецких научных сотрудников, для чего была проведена операция «Пейпер-клипс». Только очень немногим специалистам в области ракет удалось остаться в Германии…
Пилотируемые ракеты Третьего рейха
Разумеется, история Пенемюнде не ограничивается теми проектами, которые были доведены «до железа» — до моделей и серийных образцов. Конструкторская мысль всегда обгоняет текущие планы, и фантастичность замыслов инженеров Третьего рейха способна производить впечатление и по сию пору.
Так, разработчики «Fi-103» («Фау-1») вовсе не собирались останавливаться на достигнутом. Понимая, что этот ракетный снаряд в его первоначальном виде может быть использован только по «площадным» целям, они задались целью создать его пилотируемую модификацию, запускаемую с самолета-носителя, одновременно решив три задачи: увеличить точность наведения, избавиться от привязки к пусковой наземной установке и обеспечить маневренность, которая позволила бы преодолеть воздушные заградительные барьеры англичан.
Работы над управляемым вариантом «Fi-103» начались еще в октябре 1943 года, а уже к зиме был объявлен набор добровольцев для участия в этой программе.
В качестве самолетов-носителей командование Люфтваффе выделило два бомбардировочных полка KG-3 и KG-53, вооруженных бомбардировщиками «Не-111» («Heinkel») различных модификаций, в том числе и специальной версией этого самолета, обозначенной «Не-111Н-22» и изначально разработанной как носитель крылатой ракеты.
К марту 1944 года восемьдесят высококвалифицированных летчиков составили группу пилотов, проходивших теоретическую и практическую подготовку — первоначально для полетов на одноразовом реактивном самолете «Ме-328» («Messerschmitt»). Однако возможностей развернуть серийное производство нового самолета не существовало, и было принято решение использовать для реализации этого проекта серийно изготавливаемый «Fi-103».
Работу по созданию пилотируемого варианта возглавил Вилли Фидлер, технический директор заводов в Пенемюнде. Комплекс мероприятий получил наименование «Рейхенберг» («Reichenberg»), поэтому впоследствии все самолеты-снаряды этого типа носили такое же название.
Замысел был довольно прост. На ракету требовалось установить только пилотскую кабину, и получалось оружие совершенно нового типа. Поэтому на протяжении всего четырнадцати дней с начала работ инженеры Пенемюнде выпустили первые прототипы для тренировочных и практических целей.
Впоследствии было построено четыре различных пилотируемых версии «Fi-103». «Рейхенберг I» являлся бездвигательным пилотируемым самолетом-снарядом, предназначенным для натурных аэродинамических испытаний, «Рейхенберг II» — двухместным учебным для выработки навыков пилотажа, «Рейхенберг III» — одноместным учебным, оборудованным двигателем и посадочной лыжей, «Рейхенберг IV» — боевым, оснащенным боезарядом, но без шасси.
В сентябре 1943 года были испытаны в воздухе первые экземпляры бездвигательных модификаций «Рейхенберг I» и «Рейхенберг II». Выглядело это так. Бомбардировщик «Не-111» поднимал самолет-снаряд на высоту в 300400 метров; затем пилот отсоединял свой «Рейхенберг» от носителя и после планирующего полета приземлялся на аэродроме. Обучение курсантов было предельно упрощено, так как они готовились не для участия в воздушных боях, а для полета в один конец.
Во время испытательной программы «Рейхенберга III» произошел ряд катастроф. Поэтому для проведения испытаний была вызвана знаменитая летчица Ханна Рейч, уже поднимавшая в небо экспериментальные машины с реактивными двигателями. На «Рейхенберге III» ей удалось выполнить десять успешных полетов. Но и после этого аварии продолжались. Расследование показало, что их причиной был отказ системы управления ввиду сильной вибрации, создаваемой пульсирующим двигателем.
На основе «Рейхенберга IV» были созданы две боевые модификации: для поражения наземных и морских целей.

Пилотируемый вариант самолета-снаряда «Fi-103»
Морской вариант, рассчитанный на удары по крупным судам противника, отличался от сухопутного тем, что, отсоединившись от самолета-носителя, снаряд пикировал вниз под строго установленным углом со скоростью около 800 километров в час и ударялся о воду в непосредственной близости от цели. Для выдерживания заданных параметров полета был разработан специальный прицел. После удара фюзеляж распадался, освобождая специальную торпеду, которая должна была взорваться под незащищенным днищем корабля. Пилот при этом погибал.
В отличие от императорской Японии, в Германии идея пилотов-смертников не нашла восторженных приверженцев. Дисциплина среди добровольцев, которым предстояло управлять «Рейхенбергами», была низкой, и командование сомневалось, что они вообще станут выполнять поставленную задачу, если это непременно закончится их гибелью. В связи с этим генерал-фельдмаршал Эрхард Мильх, занимавший должность главного авиационного инспектора, категорически настоял на оснащении «Рейхенберга IV» катапультируемым креслом, предназначенным для эвакуации пилота после наведения снаряда на цель.
За все это время было изготовлено около 100 экземпляров самолета-снаряда «Рейхенберг», а в течение 1944 года 75 экземпляров было передано в распоряжение пятой группы бомбардировочного полка V./KG-200. Однако какая-либо информация о боевом применении пилотируемого варианта «Фау-1» отсутствует.
В 1945 году американцы захватили несколько «Рейхенбергов» в различном техническом состоянии. Они были испытаны на полигоне Аламогордо в Нью-Мексико и Эгленфилд во Флориде
Межконтинентальные ракеты Третьего рейха
Перечень проектов баллистических ракет серии «А» не заканчивается системой «А-5», понадобившейся при проектировании ракеты «А-4» («Фау-2»).
Например, конструкторы Пенемюнде разработали проект ракеты «А-6», но ни одной модели не было построено. Затем появились крылатые ракеты «А-7» (как вариант ракеты «А-5») и «А-9».
Идея придания ракетам несущих поверхностей основана на соображении увеличения дальности полета ракеты при ее возвращении в плотные слои атмосферы. Расчет здесь прост: посредством крыльев пустая и потому относительно легкая ракета может быть превращена в тело, подчиняющееся законам аэродинамики, то есть в своеобразный скоростной планер. Предварительный анализ показывал, что наличие коротких крыльев позволяло увеличить дальность полета на 160 километров, то есть для ракеты с характеристиками «Фау-2» дальность доводилась до 480 километров. Такой вариант ракеты «А-4» действительно был испытан, что привело к созданию модифицированного варианта — «А-4Ь».
В декабре 1944 года было решено построить двадцать прототипов этой новой ракеты. Два первых запуска «А-4Ь» закончились неудачей, однако работы были продолжены, и 27 января 1945 года наконец состоялся успешный старт. Полет шел по плану, но в момент перехода к планированию повредилось одно из крыльев, и расчетная дальность не была достигнута.
Разрабатывался также управляемый вариант «А-4Ь» с небольшой кабиной, убирающимся колесным шасси и небольшим дополнительным реактивным двигателем, позволяющим увеличить дальность полета. Этот проект, впрочем, так и остался на стадии эскизного проектирования.
На базе проекта «А-4Ь» разрабатывалась ракета, получившая обозначение «А-9» (ее также называли «Amerika-Rakete»), которая должна была работать на топливе, несколько отличном от того, которое применялось в ракете «А-4», так как ее предполагалось разгонять с помощью ракеты-носителя «А-10» со стартовым весом около 75 тонн и суммарной тягой двигателей в 180 тонн. Это делало двухступенчатую ракету «А-9/А-10» межконтинентальной «трансатлантической» ракетой, которую можно было бы применить против Соединенных Штатов Америки. Общая длина ракеты составляла 29 метров, диаметр — 3,5 метра, максимально достижимая высота — 180 километров, дальность — 4800 километров.

Перспективная ракета «А-9/А-10»
История системы «А-9/А-10» до сих пор вызывает горячие споры. Одни утверждают, что было изготовлено только два или три макетных образца ракеты «А-9», а ускоритель «А-10» так и остался на бумаге. Другие, ссылаясь на изыскания западных историков, говорят о том, что межконтинентальная ракета Третьего рейха была не только сконструирована, но и доведена до серийного производства.
В качестве аргумента в пользу последней версии обычно приводится следующая история. В ночь на 30 ноября 1944 года береговая охрана США уничтожила высадившуюся на атлантическое побережье немецкую диверсионную группу «Эльстер». Среди багажа убитых в перестрелке диверсантов обнаружили портативный и весьма мощный радиомаяк. Позже выяснилось, что его должны были установить на один из небоскребов Манхэттена в Нью-Йорке, чтобы обеспечить точное наведение межконтинентальной ракеты.
Далее сторонники этой версии рассказывают, что было изготовлено две ракеты типа «А-9/А-10». Одну планировалось испытать, выпустив по Гренландии. Вторую, с боеголовкой в тонну мощного взрывчатого аматола 60/40, собирались запустить на Нью-Йорк.
Сведения о ходе эксперимента довольно туманны. Один из источников говорит о том, что операция «Эльстер» — запуск трансатлантической ракеты по несуществующему маяку состоялся 8 января 1945 года, закончившись неудачей. Другой запуск был произведен 24 января 1945 года, и на борту ракеты находился пилот Рудольф Шредер. Однако на десятой секунде после взлета ему показалось, будто ракета загорелась, и он раскусил ампулу с цианистым калием, предусмотренную для избавления от мучительной смерти. Тем не менее «А-9/А-10» пошла нормально, выскочив в космос по баллистической траектории. Но без управления ракета сбилась с курса и упала где-то в Атлантике.
Согласно третьей существующей версии, немцы произвели около 48 пусков системы «А-9/А-10», причем в 1944 году на старте и в полете взорвалось 16 образцов. Начальник военного отдела СС оберштурмбаннфюрер Отто Скорцени даже успел набрать отряд пилотов для этой ракеты: по разным сведениям, от сотни до полутысячи человек. Их собирались использовать для наведения ракет на конечном этапе полета — так называемая система «А-9/А-10Ь». Как и в случае с пилотируемой модификацией «Фау-1», создатели трансатлантической ракеты вовсе не собирались делать из пилотов камикадзе — после нацеливания ракеты на какой-нибудь из американских городов пилоты должны были выбрасываться с парашютом над заданным местом в океане, где их поджидали бы подводные лодки…
Космическая пушка Гвидо фон Пирке и проект «Фау-3»
Помимо самолета-снаряда «Фау-1» и баллистической ракеты «Фау-2», на вооружение армии Третьего рейха было поставлено еще одно новшество, которое имело непосредственное отношение к космическим разработкам довоенной Германии. Речь идет о проекте сверхдальнобойной пушки, которой было присвоено название «Фау-3».
Предыстория этого проекта такова. В 1925 году уже знакомые нам Герман Оберт и Макс Валье в развитие идей Жюля Верна предложили вниманию публики свое видение пушки, предназначенной для обстрела Луны. Орудие длиной 900 метров планировалось разместить вертикально внутри скалы на высоте не менее 5 километров от уровня моря и где-нибудь в районе экватора. Ствол следовало сделать из бетона, внутри покрыв слоем металла с нарезами. Перед выстрелом из канала выкачивался весь воздух. Снаряды для пушки, представляющие собой свинцовую болванку с вольфрамовой оболочкой, имели диаметр 1,2 метра и длину 7,2 метра.
Согласно расчетам «Общества», результаты которых приведены в книге Валье «Полет в мировое пространство», начальная скорость снаряда должна была составить 12 км/с, что позволило бы ему преодолеть земное притяжение и достичь Луны. При этой скорости снаряд пролетит через ствол за 3,75 секунды.
В 1928 году другой энтузиаст космических полетов и член «Немецкого ракетного общества» барон Гвидо фон Пирке из Вены на основании этого проекта разработал свою собственную «лунную» пушку. В частности, он показал, что для достижения второй космической скорости необходимо строить орудие с боковыми наклонными камерами, внутри которых размещаются заряды, при подрыве придающие снаряду дополнительные импульс и ускорение. Точно неизвестно, знаком ли был фон Пирке с книгой Фора и Граффиньи «Необыкновенные приключения русского ученого», но принцип орудия с боковыми камерами, как мы помним, был впервые предложен именно этими авторами.
Заинтересовались этой идеей и конструкторы Третьего рейха. Проект, порожденный воображением французских мечтателей, обрел воплощение в виде программы по разработке сверхдальнобойного орудия, проходившего в документах нацистов под обозначением «Hochdruckpumpe» или «V-3».
Согласно уцелевшим архивам, орудие должно было иметь калибр 150 миллиметров и расчетную дальность стрельбы около 165 километров. Ствол общей длиной 140 метров перевозился по частям и монтировался на бетонном основании стационарной огневой позиции. Снаряд имел длину 2,5 метра, весил 140 килограмм и по форме напоминал ракету.
Прототип орудия с калибром 20 миллиметров был изготовлен в апреле 1943 года и уже в мае с успехом демонстрировался на одном из испытательных полигонов в Польше. Говорить о точности попадания здесь не приходится — «Фау-3» могла работать только по площадным целям. Однако руководители Третьего рейха полагали, что «Фау-3» вкупе с баллистическими ракетами Вернера фон Брауна можно использовать в качестве инструмента террора, и конструкторы получили военный заказ на 50 орудий.
Огневые позиции пяти сверхдальнобойных пушек «Фау-3» планировалось разместить на побережье Франции, близ Кале. Каждое орудие размещалось внутри наклонной шахты, которую закрывал бетонный защитный купол в 5,2 метра толщиной. Конструкция предусматривала возможность замены боковых «зажигательных» камер, так как эксперимент показал, что после нескольких выстрелов они прогорают.
Строительство первой пушки «Фау-3» началось в сентябре 1943 года и близилось к завершению, когда при налете авиации союзников 6 июля 1944 года несколько бомб попали в шахту ствола, и конструкция была разрушена.
К концу августа, перед лицом наступления союзников, нацисты окончательно отказались от планов по постройке сверхдальнобойных пушек на побережье Франции.
В ходе Второй мировой войны были применены только две сверхдальнобойные пушки проекта «Фау-3», но обе они имели длину ствола около 45 метров и лишь ненамного превосходили прототип. Огневые позиции для этих двух пушек были размещены в Антверпене и Люксембурге в поддержку Арденнского наступления в декабре 1944 года. Однако их применение не принесло желаемого результата
Недостроенный комплекс большого орудия «Фау-3» на побережье Франции был взорван британцами 9 мая 1945 года.
В то время как Вальтер Дорнбергер и Вернер фон Браун отрабатывали «ракетное» направление, конструкторы Люфтваффе всерьез подошли к решению проблемы создания самолетов с воздушно-реактивными и ракетными двигателями, делая в металле то, о чем писал и мечтал Макс Валье.
Как мы знаем, главной особенностью жидкостного ракетного двигателя (ЖРД) является его способность развивать большую тягу в течение короткого периода времени. Чрезвычайно высокий расход топлива ограничивает его применение в качестве основной силовой установки для самолета, но ЖРД может быть использован как силовая установка в тех случаях, когда необходимо получить большую скорость полета, не считаясь с его продолжительностью.
Уже в первой половине тридцатых годов в Германии фирмой «Хейнкель» был построен экспериментальный самолет «Не-112» («Heinkel»), на двух экземплярах которого проводились испытания ракетного двигателя «А-1» конструкции Вернера фон Брауна.
Машина предназначалась только для изучения принципа реактивного движения, и первые результаты оказались более чем. скромными. Собственная скорость «Не-112» составляла 300 км/ч и увеличивалась до 400 при включении реактивной тяги. В процессе дальнейших испытаний самолет показал максимальную скорость 458 км/ч, но разбился при очередном полете.
Двигатель «А-1» имел существенный недостаток — отсутствие регулировки тяги, что препятствовало его использованию в качестве самостоятельной силовой установки самолета.
В то же время появилась новая конструкция ракетного двигателя «ТР-1» на перекиси водорода, разработанная Гельмутом Вальтером. Следующий двигатель этой серии «ТР-2» уже имел регулятор тяги.
Это позволило фирме «Хейнкель» начать работу над созданием самолета «Не-176», оснащенного только ракетным двигателем. Работы под управлением Ганса Регнера начались в конце 1937 года.

«Не-176» со сбрасываемой кабиной и небольшим крылом с большой удельной нагрузкой
«Не-176» был достаточно небольшим самолетом с сильно зализанными аэродинамическими формами. Передняя часть фюзеляжа представляла собой целиком остекленную и сбрасываемую кабину (предшественница современных катапультируемых кресел), а в хвостовой части размещался двигатель «ТР-2», к тому времени получивший официальное название «Walter HWK R.I. 203». Кроме этого самолет имел убирающиеся шасси. Без топлива машина весила 1570 килограммов, а в снаряженном состоянии — 2 тонны ровно.
Первый полет этого ракетоплана состоялся 20 июня 1939 года и продлился 50 секунд, а скорость составила всего лишь 273 км/ч (против проектной в 750 км/ч). Несмотря на все старания инженеров фирмы «Хейнкель», «Не-176» так и не удалось разогнать выше скорости в 346 км/ч.
Несмотря на неудачную конструкцию, «Не-176» использовался как образец для закрытых авиационных показов, на которых присутствовали руководители Третьего рейха, и сошел со сцены лишь будучи вытесненным более поздними машинами, значительно превосходящими его по своим характеристикам.
В конце войны в фирме «Хейнкель» велись работы по совершенствованию истребителя «Не-162», на базе которого был предложен целый ряд проектов, оставшихся невоплощенными.
Например, самолет «He-162D» представлял собой серийный образец «Не-162В», оснащенный пульсирующим двигателем «As014» (которые, как мы помним, устанавливались на снаряды «Фау-1»). Для обеспечения взлета истребителя применялись сбрасываемые стартовые ускорители. Этот самолет предполагалось вооружить двумя пушками «МК-103» калибром 30 миллиметров.
На конкурс по созданию перехватчика с ракетным двигателем фирма «Хейнкель» также выставляла два своих проекта: Р.1068 «Romeo» и Р.1077 «Julia». Незначительно различаясь в размерах и некоторых деталях конструкции, оба предложенных варианта представляли собой одноразовые малоразмерные пилотируемые истребители с пушечным вооружением, оснащенные ракетными двигателями. Однако победа в конкурсе осталась за проектом фирмы «Бахэм».
Ракетопланы Института планеризма
Провал проекта ракетоплана «Не-176» побудил Исследовательское бюро Министерства авиации к поиску такого планера, который мог бы наиболее полно реализовать достоинства ракетных двигателей Вальтера. Эксперты бюро полагали, что этого можно добиться, если планер будет сконструирован по схеме «бесхвостка».
Поскольку самым авторитетным специалистом в области создания машин такой конструкции в то время являлся Александр Липпиш, к нему обратились с предложением о сотрудничестве. Вначале речь шла об адаптации под новую силовую установку планера «Delta IVb», для чего по распоряжению Министерства авиации в 1937 году завод Института исследований в области планеризма (Deutsches Forschungsinstitut fur Segelflug, DFS) изготовил два экземпляра машины, получившей обозначение «DFS-39». При этом в институте была собрана специальная группа конструкторов, в обязанности которых входила работа над совершенно секретным проектом «X» («Икс»).
Эта группа, руководимая Липпишем, в конечном итоге должна была спроектировать истребитель с дельтовидным крылом, оснащенный ракетным двигателем. Постройку цельнометаллического фюзеляжа опытной машины поручили все той же фирме «Хейнкель», так как завод института в Дармштадт-Грасхайме не имел необходимого для этого оборудования. В институте была проработана и конструкция деревянных крыльев.
Вскоре модель машины продули в Геттингенской аэродинамической трубе. Результаты эксперимента показали, что устойчивость ракетоплана в полете значительно увеличится, если использовать скошенные крылья с нулевым углом атаки. После внесения в планер ряда изменений доработанный проект несколько отличался от «DFS-39», хотя общая конструкция плоскостей осталась практически неизменной. Наиболее заметной доработкой стал демонтаж небольших вертикальных килей с законцовок крыльев. Новый проект получил обозначение «DFS-194».
В связи с задержкой в поставке двигателей Вальтера самолет оснастили поршневым двигателем воздушного охлаждения с толкающим винтом, размещенным в хвостовой части фюзеляжа. Винт приводился в движение с помощью коленчатого вала. Установка поршневого мотора позволяла провести ряд необходимых испытаний планера.
В конце 1938 года, взбешенный проволочками в сборке фюзеляжа фирмой «Хейнкель», Александр Липпиш принял решение сосредоточить под своим руководством все работы над ракетопланом. 2 января 1939 года, оставив завод института, профессор вместе с 12 ближайшими сотрудниками перенес свою штаб-квартиру в фирму «Мессершмитт» («Messerschmitt A. G.»). В результате контракт Министерства авиации на новый ракетный самолет достался Вилли Мессершмитту.
В годы войны Институт исследований в области планеризма разработал еще несколько экспериментальных летательных аппаратов с ракетными двигателями. Одним из самых выдающихся проектов этого института, вплотную приблизивших ракетную авиацию к преодолению скорости звука, стал «DFS-346».
Осенью 1944 года Техническое бюро Люфтваффе составило задание на разработку самолета, способного достигнуть крейсерской скорости в 2 Маха и высоты 35 тысяч метров. Таким самолетом должен был стать экспериментальный «DFS-346», предназначенный для ведения разведки и оснащенный двухкамерным ракетным двигателем «Walter HWK 109-509О» тягой в 2 тонны каждый.
«DFS-346» имел вытянутый фюзеляж длиной 12 метров, напоминающий ракету, и с размахом крыла 9 метров. Пилот должен был находиться в положении лежа, лицом вниз в герметичной отделяемой кабине. В случае аварийной ситуации крепежные болты подрывались и кабина отделялась от фюзеляжа. Через несколько секунд должна была сработать катапульта и выбросить пилота вместе с креслом из кабины. Затем пилот отделялся от кресла и спускался на парашюте. «DFS-386» не имел шасси и должен был садиться на центральную лыжу. Запас топлива обеспечивал лишь непродолжительное время работы двигателя, и для увеличения длительности полета можно было отключить одну из камер двигателя, что сказывалось на скорости.
Согласно расчетам доктора Феликса Кратча, главного конструктора проекта, на высоте 20 километров «DFS-346» мог достичь скорости 2,6 Маха.
Немцы успели построить несколько моделей и даже преступили к созданию самого самолета. Однако на конечном этапе постройки этот единственный экземпляр был уничтожен в апреле 1945 года.
Ракетопланы фирмы «Мессершмитт»
После перехода Александра Липпиша и его соратников в конструкторское бюро фирмы «Мессершмитт» там была организована так называемая «Группа L», подчинявшаяся непосредственно Исследовательскому бюро Министерства авиации. Вскоре туда же прибыли частично готовые ракетопланы «DFS-194», над развитием конструкции которых предстояло работать.
На первых порах проект был обозначен как «Ме-194» («Messerschmitt»), а затем (после введения сквозной нумерации) — «Me-163».
В начале 1940 года, после долгожданного прибытия готовых двигателей «Walter HWK R.I. 203», поршневые моторы с планера были сняты, а фюзеляж подготовлен под установку ЖРД. В таком виде планер и силовая установка были перевезены в испытательный центр Пенемюнде на аэродром Карлсхаген, где и должны были проходить испытания.
Первый экземпляр «DFS-194» («Ме-163») имел размах крыла 10,6 метра, длину — 6,4 метра, взлетный вес — 2,4 тонны и был рассчитан только на скорость порядка 300305 км/ч.
Летные испытания проводил знаменитый планерист и чемпион мира 1937 года капитан Хейни Дитмар, ранее уже поднимавший несколько самолетов конструкции Липпиша. Первый полет состоялся 3 июня 1940 года. Несмотря на проблемы с двигателем и топливом для него, а также небольшую продолжительность полета в целом, испытания были признаны успешными. Скороподъемность оказалась отличной, а летом 1940 года была достигнута скорость 547 км/ч.
Успешная апробация нового двигателя на «DFS-194» способствовало резкому увеличению темпа работ над самим «Ме-163». Кроме того, из фирмы «Вальтер» поступали внушающие; оптимизм сообщения о работах над созданием усовершенствованного ракетного двигателя «Walter HWK R.II. 203», тягу которого можно было регулировать в пределах от 150 до 750 килограммов. В качестве топлива в этих ЖРД использовалась T-Stoff (смесь перекиси водорода — 80 % и воды — 20 %), в качестве окислителя — Z-Stoff (водный раствор перманганата калия). При соединении топлива с окислителем образовывалась самовоспламеняющаяся смесь, что позволяло обходиться без элементов зажигания в камере сгорания. Липпиш планировал оснастить двигателями Вальтера машины новой модификации «Ме-163А», а пока сосредоточился на достройке экспериментальных образцов «Me-163V1» и «Me-163V2».
Работы над первым из них были завершены зимой 1941/42 года в Лехфельде. Повышенный интерес со стороны ВВС повлек за собой размещение заказа на постройку еще четырех прототипов.
Планерные испытания начались следующей весной. Образец под управлением Дитмара был поднят на буксире за самолетом «ВШ0С».
«Me-163V1» и тут продемонстрировал отличные аэродинамические качества — скорость снижения была только 1,5 м/с при скорости полета 220 км/ч. Но хорошие парящие качества и отсутствие закрылков сделали ракетоплан трудным при посадке в пределах выбранного аэродрома — пилот перелетел несколько сот метров от выбранной точки посадки.
Затем «Ме-163 VI» был отбуксирован в Аугсбург, но перегон чуть не закончился потерей экспериментального самолета. Видя, что он промахивается мимо аэродрома, Дитмар был вынужден накренить самолет, чтобы проскочить в узкий промежуток между двумя ангарами, и приземлился уже за строениями аэродрома.
В целом летные характеристики «Me-163V1» оказались очень хорошими. Эрнст Удет, шеф службы вооружений и поставок Люфтваффе, наблюдая один из скоростных планирующих полетов «Ме-163», настолько впечатлился новой машиной, что проекту был придан высший приоритет.
Летом 1941 года, когда были выпущены 6 опытных самолетов, «Ме-163V1» и «Me-163V4» были переведены в Пенемюнде, где на них поставили ракетные двигатели «HWK R.II. 203Ь» с тягой по 750 килограммов. Летные испытания с силовыми установками проводились с июля по октябрь. Первый полет на максимальной тяге был выполнен 13 августа 1941 года. Во время одного из первых же полетов Дитмар превысил мировой рекорд скорости, достигнув 900 км/ч.
Главной проблемой с достижением большой скорости был малый запас топлива. Чтобы сэкономить топливо на взлете, 2 октября 1941 года Дитмар поднял «Me-163V4» на буксире за «Bf11 °C». На высоте 4 километров буксир был отцеплен, Дитмар запустил двигатель и спустя 2 минуты развил в горизонтальном полете скорость 1004 км/ч (0,84 Маха). На этой скорости сказался эффект сжимаемости воздуха — ракетоплан вошел в пикирование. Дитмар выключил двигатель, самолет быстро сбросил скорость и вновь стал управляемым. За этот полет Дитмар получил премию имени Лилиенталя, присуждаемую за выдающиеся работы в области аэродинамических исследований.
1 декабря 1941 года вышло распоряжение Министерства авиации, в котором санкционировалось продолжение работ над боевой версией самолета — «Ме-163В». Первоначальный же вариант «Ме-163» стал называться «Ме-163А».
Кроме шести опытных «Ме-163А» была выпущена серия из 10 «Ме-163А-0». Они собирались на Вольф Хирт, заводе в Геттингене, и должны были использоваться в качестве учебных.
В 1943 году было создано секретное подразделение «Erprobundskommando 16» («Ekdo 16»), к которому стали прикомандировывать наиболее подготовленных пилотов, зачастую переводя их из боевых частей с линии фронта. Из-за повышенного внимания англичан и американцев к Пенемюнде весь проект перевели на новый объект, расположенный в Бад Цвишенан, — небольшую железнодорожную станцию недалеко от Ольденбурга.
Программа подготовки пилотов начиналась с изучения материальной части, принципа работы двигателя и тренировок в барокамере. Для многих летчиков новый самолет, получивший к тому времени официальное наименование «Messerschmitt Ме-163 Komet» («Комета»), казался чем-то совершенно фантастическим. Крохотный треугольный самолетик, оставляя за собой густой шлейф фиолетово-сиреневого выхлопа, мгновенно пробегал короткий отрезок бетонной взлетно-посадочной полосы и еще через несколько мгновений круто уходил вверх. Менее чем через минуту он уже скрывался из виду, и лишь дымный шлейф позволял понять, куда делся самолет.
Сложности испытаний ракетоплана, да и обучения тридцати пилотов, прикомандированных к «Erprobundskommando 16», возглавляемому известным боевым летчиком майором Шпете, заключались в том, что кроме очевидных преимуществ «Ме-163» имел и целый ряд существенных недостатков.
В частности, малые размеры планера не оставляли конструкторам места для расположения механизма убирания шасси. Конструкция крыла не позволяла разместить в нем что-либо еще, кроме топливных баков. Да и баки удалось расположить лишь в корне крыла. Первая треть фюзеляжа была занята довольно тесной пилотской кабиной с приборной панелью и элементами управления. Задняя треть вмещала сам ракетный двигатель Вальтера с длинным раструбом сопла. Всю центральную часть занимали топливные баки, отделенные от кресла пилота огнеупорной перегородкой. Места для убирания шасси не было вовсе, а сделать их неубирающимися не позволяла высокая скорость полета. В процессе работ были предложены различные идеи, но в конце концов конструкторы остановились на варианте сделать шасси съемными (сбрасываемыми после взлета), а посадку производить на центральную лыжу, выдвигаемую из-под фюзеляжа.
Кроме того, «Ме-163» имел довольно маленькие крылья, — на расчетных скоростях большой несущей площади и не требовалось, но это оборачивалось высокими посадочными скоростями. Скорость при касании составляла 220 км/ч, и любая ошибка пилотирования могла стать последней в жизни пилота. Посадка производилась после полного прекращения процесса горения в камере сгорания, так что возможности прибавить газу и зайти на второй круг не оставалось. Поэтому промах мимо заданной точки касания практически всегда означал вылет за пределы полосы, опрокидывание машины и ее сильное повреждение. Топливные баки никогда не оставались сухими, а случайное смешение остатков компонентов топлива означало сильный взрыв и гибель пилота
Компромисс дался чрезвычайно тяжело. Столь необычный способ посадки ограничивал базирование перспективных истребителей исключительно аэродромами с бетонированными взлетно-посадочными полосами. Вторым важным ограничением, которое пока не удавалось преодолеть, было чрезвычайно малое время полета. Благодаря самовоспламеняющемуся топливу отпала необходимость в зажигании, а ради пущей экономии веса пришлось отказаться и от топливных насосов. Перед взлетом пилот запускал маленький компрессор, создающий в топливных баках избыточное давление. Вытесняемое топливо поступало в камеру сгорания, где смешивалось и загораюсь, создавая необходимую тягу. Во время полета избыточное давление в топливных баках создавалось бортовым компрессором, питающимся от электрогенератора, приводимого в действие обычным ветряком, размещенным в носовой части фюзеляжа и раскручиваемым набегающим потоком воздуха. Однако запаса топлива хватало всего на десять минут работы двигателя. Сам процесс горения был неуправляем, поэтому после включения насоса остановить взлет уже не представлялось возможным, а сам полет продолжался до полной выработки горючего. Пилот должен был постоянно помнить о том, насколько он удалился от своего аэродрома, ибо после остановки двигателя ему ничего не оставалось, как только планировать в сторону аэродрома, гасить скорость, выпускать лыжу и молиться.
Кроме того, хранение топлива было сопряжено с достаточно высокими затратами. Это особенно касалось «Т»-состава, для которого требовалось создавать отдельные и хорошо изолированные хранилища, — например, он мог взорваться от того, что в резервуар попала муха.
Не меньше хлопот топливо доставляло из-за своей высокой агрессивности. Оно быстро растворяло любую органику, и опасным было попадание на одежду даже небольшого его количества. Однако размеры ракетоплана были столь малы, что использовать приходилось практически каждый кубический сантиметр внутреннего объема. Потому емкости под второй компонент были размещены прямо в пилотской кабине.
Мано Циглер рассказывал, как будучи лейтенантом Люфтваффе принимал участие в испытательных полетах «Ме-163» и стал свидетелем одного инцидента. Очередной полет должен был совершить пилот Йожи, который занял место в кабине заправленного самолета. Все началось как обычно, но в момент взлета рано отскочили шасси, хотя машина еще не набрала должной скорости и неслась слишком низко над землей. Шасси упали вниз и, резко срикошетив от бетонной полосы, ударили снизу по фюзеляжу самолета. Удар повредил трубопровод подачи топлива. Йожи отчаянно рванул вверх, пытаясь хоть как-то зайти на экстренную посадку. Однако самолет зацепил ствол одного из зенитных орудий, стоявших на краю полосы, опрокинулся и, пропахав длинную борозду, остановился. Так как все произошло буквально на глазах у аэродромного персонала, то пожарные расчеты и команда санитаров практически тут же оказались у самолета. Увы, пилот уже не нуждался в помощи. Протекшее в кабину топливо практически полностью растворило тело человека. Не помог даже особый костюм, специально разработанный для защиты пилотов.
Ситуация на фронтах обострялась день ото дня, и Геринг, несмотря на имеющиеся недочеты, санкционировал начало серийного производства истребителей «Ме-163В». Ракетоплан вооружили двумя 30-миллиметровыми пушками и передали в боевые эскадрильи Люфтваффе.
«Комета» развивала огромную скорость, и командование полагало, что бортовые стрелки бомбардировщиков и истребители противника физически не смогут попасть в скоростной самолет такого малого размера. Как показали последующие события, этот расчет полностью оправдался. Те члены экипажей бомбардировщиков, которым довелось столкнуться в небе с немецкими ракетопланами, вспоминают об этом до сих пор. Самолеты странной формы возникали из ниоткуда, как ужасном кошмаре, совершенно безнаказанно прошивали бомбардировщик очередями автоматических авиационных пушек и растворялись в окружающем пространстве так же внезапно, как появлялись. Все, что успевали заметить ошарашенные бортстрелки, это опознавательные знаки Люфтваффе, нанесенные на фюзеляж.
Известно, что боевое крещение «Комета» получила 28 июля 1944 года в бою против соединения бомбардировщиков в районе Мерзербурга. «Комета» довольно активно применялась в последние месяцы войны. Тем не менее не сохранилось сведений о том, что кому-нибудь удалось ее сбить. Это говорит о том, что при всех недостатках конструкции «Ме-163» был уже готов для боевого применения даже в преддверии краха нацистской империи, а союзники ничего не могли ему противопоставить.
Всего было построено 360 истребителей «Ме-163». При этом серийное производство сопровождалось постоянным совершенствованием конструкции самолета.
В начале 1945 года увидела свет модификация «Ме-163С», развивавшая скорость 944 км/ч и достигавшая высоты 16 километров. На ней была установлена новая версия двигателя «Walter HWK 109-509С» с двумя камерами сгорания: главной «стартовой» и вспомогательной, которая могла работать при малых тягах.
Кроме того, бюро «Липпиш-Мессершмитт» начало работу над еще более совершенной версией ракетоплана, получившей обозначение «Me-163D».
Фактически «Me-163D» представлял собой другой самолет с удлиненным на 0,85 метра фюзеляжем, вмещавшим большой запас топлива. Он сохранил от предшественника крыло, но его конструкция была изменена, чтобы увеличить емкость баков. Однако самое концептуальное изменение касалось шасси. Сбрасываемая тележка и выдвижная лыжа были заменены классическими шасси, полностью убирающимися в фюзеляж в полете. Вооружение «Me-163D» состояло из двух пушек «МК-108» калибром 30 миллиметров, размещенных в прикорневых частях крыла.
Первый опытный «Me-163D-V1» был готов в конце весны 1944 года. Планерные испытания с фиксированными стойками прошли успешно, но к этому времени в Министерстве авиации решили, что фирма Мессершмитта просто не обладает необходимыми людскими ресурсами, чтобы довести «Me-163D» до серийного производства. В результате поступило распоряжение перевести работы по ракетоплану на завод фирмы «Юнкерс» в Дассау.
Под руководством профессора Генриха Хертеля ракетоплан несколько перепроектировали, после чего он был назван «Ju-248» («Junkers»). В процессе работ было изменено остекленение кабины пилота, самолет оснастили каплевидным фонарем с обзором в 360°. Неподвижные предкрылки были заменены на автоматические, а площадь закрылков увеличена. Фюзеляж цельнометаллической конструкции выполнялся из трех секций. Передняя вмещала кабину, нишу носового колеса, радиостанцию и генератор. Она приклепывалась к основной секции, вмещавшей баки и ниши основных стоек шасси. Задняя секция была съемной для технического обследования двигательной установки. Бронированный носовой конус от «Ме-163В» на новый самолет не ставился, а защита пилота обеспечивалась 20-миллиметровой плитой, прикрывавшей ноги и половину туловища, двух 12-миллиметровых бронеплит, прикрывавших верхнюю часть туловища, и 100-миллиметрового бронестекла. Вооружение состояло из пушек «МК-108» с 75 снарядами на ствол в корне крыльев. Боезапас помещался в фюзеляже над нишами шасси.
«Ju-248-V1» был построен в Дессау в августе 1944 года. Первые испытания проводились в безмоторном полете — самолет поднимался в воздух в сцепке с «Ju-188». К сентябрю на экспериментальный образец ракетоплана был установлен ракетный двигатель «Walter HWK 109-509С-4».
В это время Министерство авиации внезапно пересмотрело свое решение и целиком передало программу опять на заводы Мессершмитта, изменив обозначение самолета на «Ме-263». По неподтвержденным данным, прототип «Me-263-VT» прошел серию пилотажных испытаний с работающим двигателем
Однако война стремительно катилась к концу. Вермахт отступал под мощными ударами на Востоке и Западе, и наладить массовое производство новых машин не удалось. Множество самолетов было потеряно на земле; немалое количество уничтожено самими немцами при отступлении. Остальное было захвачено войсками антигитлеровской коалиции. Кроме готовых ракетопланов победителям достались заводы, документация, технический персонал и результаты многолетних исследований. В частности, единственный построенный прототип «Me-263-VI», как и недостроенный двухместный учебный вариант «Me-163S», достались Советскому Союзу.
Еще одним проектом, имевшим непосредственное отношение к ракетостроению Третьего рейха и разрабатывавшимся в КБ фирмы Мессершмитта, был самолет, использовавший в качестве силовой установки два ракетных двигателя от «Фау-1». Этот ракетоплан получил обозначение «Ме-328», и работы над ним начались в 1943 году, когда появился избыток пульсирующих двигателей.
Разрабатывалось несколько версий этого самолета. «Ме-328 А1» — с двигателями под крыльями, вооруженный двумя пушками «MG-151» калибра 25 миллиметров. «Ме-328 А2» — с четырьмя двигателями, по два с каждой стороны фюзеляжа, вооруженный двумя пушками «MG-103» калибра 30 миллиметров. «Ме-328 В1» и «Ме-328 В2» — бомбардировочные версии, с двигателями под крыльями и по бокам фюзеляжа. Обе последние модификации были способны нести до 1400 килограммов бомб.
Фирма «Мессершмитт» успела построить несколько прототипов «Ме-328» и даже провела несколько испытательных полетов. Однако до боевого применения дело так и не дошло.
Наличие в Германии огромного числа всевозможных ракетных и реактивных проектов объяснялось тем, что к 1944 году многие немецкие фирмы стали разрабатывать самолеты в инициативном порядке. К тому же обычной практикой было объявление Техническим управлением Люфтваффе открытых конкурсов на разработку конкретных машин. На конкурс принимались только детально проработанные проекты, которые в случае успеха почти немедленно могли быть реализованы в опытные образцы или прототипы. В результате получалось, что конкурс выигрывал всего один проект, но на соискание подавалось несколько десятков вариантов. Например, на конкурс по созданию так называемого «Народного истребителя» («Volksjager») были одновременно выставлены проекты шести ведущих немецких конструкторских бюро: «Хейнкель», «Юнкере», «Арадо», «Фокке-Вульф», «Блохм и Восс» и «Хортен». Нередко фирмы демонстрировали не просто проект, а одновременно несколько независимых его вариантов.
Постоянное участие авиастроительных фирм и КБ Третьего Рейха в многочисленных конкурсах привело к появлению большого количества достаточно проработанных конструкций реактивных и ракетных самолетов. И по сей день в немецких архивах времен Второй мировой войны можно отыскать описания совершенно фантастических летательных аппаратов, которые при ином развитии истории вполне могли бы стать основой для космической программы Германии.
Например, авиационная фирма «Арадо» («Arado») представила вниманию руководителей Третьего рейха проект «Аг Е-381». Это был одноместный истребитель, оснащенный ракетным двигателем «Walter HWK109-509А-2». Ракетоплан должен был подвешиваться под бомбардировочную версию самолета «Аг-234», с целью обеспечения истребительного прикрытия во время выполнения бомбардировочных задач. «Е-381» был рассчитан на то, чтобы в случае столкновения с самолетами противника отсоединиться от носителя, набрать дополнительную высоту и выполнить атакующий маневр. Собственного ресурса топлива должно было хватить на повторный заход. Предполагалось, что далее пилот сможет развернуться и планировать в сторону ближайшего аэродрома, где совершит посадку на подфюзеляжную лыжу. Внутри ракетоплана пилот располагался в положении лежа и был защищен 5-миллиметровым стальным корпусом, а также плексигласовым фонарем толщиной 140 миллиметров. Вооружение состояло из пушки «МК-108». Для обеспечения комфорта летчика во время продолжительного полета на большой высоте предусматривалась возможность подачи теплого воздуха из самолета-носителя.
Излишек произведенных ракетных двигателей «As014» для крылатых ракет «Фау-1» побудил Люфтваффе объявить конкурс на создание миниатюрного истребителя, который бы использовал эти двигатели. В рамках конкурса конструкторское бюро «Блохм и Восс» («Blohm und Voss») разработало проект ракетоплана «Р-213». Это был небольшой самолет длиной 6,2 метра, с деревянными крыльями размахом 6 метров. Передняя часть фюзеляжа состояла из двух половинок, отформованных из стальной брони. В верхней части размещалась пилотская кабина с каплевидным фонарем. На деревянной хвостовой балке крепилось «мотыльковое» оперение, скошенное вниз. Относительно небольшая тяга пульсирующего двигателя «As014» (всего 300 килограммов) требовала применения на старте катапульты или дополнительных ускорителей. Максимальная скорость полета ракетоплана на уровне моря составляла 700 км/ч, а на высоте 9000 метров — 450 км/ч, практический потолок — 10 километров. Вооружение проектировалось в виде одной пушки «МК-108».
Весьма обширную реактивную программу проводила и авиационная фирма «Фокке-Вульф» («Focke-Wulf»). Она принимала участие практически во всех крупных конкурсах Третьего рейха, а также спроектировала несколько машин в инициативном порядке.
На конкурс «Volksjager» («Народный истребитель») «Фокке-Вульф» представила самолет, напоминавший уменьшенную копию серийного истребителя «Та-183», но оснащенный жидкостным ракетным двигателем «Walter HWK 109–509». В корне крыла располагались две пушки «МК-108». Взлет планировалось осуществлять со стартовой тележки, а после выполнения задачи предусматривалась планирующая посадка Согласно расчетам, этот ракетоплан должен был набирать высоту 16500 метров за 100 секунд, а через 9 секунд после старта развивать скорость 650 км/ч.
Еще одной версией реактивного истребителя, над которой работало конструкторское бюро «Фокке-Вульфа», был «Jager Proekt VII» («Flitzer»). Отличительной особенностью «Проекта VII» являлась комбинированная силовая установка. Вместе с турбореактивным двигателем внутри фюзеляжа размещался жидкостный ракетный двигатель Вальтера.
В июле 1944 года Техническое управление Люфтваффе провело блиц-конкурс на создание реактивного истребителя-перехватчика, который бы мог мгновенно подыматься на высоту полета бомбардировщиков врага (10–11 тысяч метров), стартуя в зоне прямой их видимости. Наличие ЖРД в качестве силовой установки увязывалось заказчиком с рядом других требований: максимальной дешевизной производства, технологичностью и простотой в эксплуатации. Квалифицированных рабочих рук не хватало, и сложный в производстве самолет делать было просто некому.
Как и обычно, в конкурсе приняли участие почти все авиационные фирмы, за невероятно короткий срок предложившие свои варианты. Одно только конструкторское бюро Мессершмитта с июня по сентябрь представило четыре проекта одноместного истребителя с ракетным двигателем. Конструкторы «Арадо» представили свой проект «Е-381». «Хейнкель» — два похожих проекта: Р.1068 «Romeo» и Р.1077 «Julia». «Юнкерс» вообще сразу «выкатил» прототип «EF-127» («Wally»).
В августе 1944 года свой проект «ВР-20» представил инженер Эрик Бахэм из города Вальдзее, владелец фирмы «Бахэм-верке» («Bachem-Werke») по производству летного оборудования. Бахэм предложил строить одноместные одноразовые высокоскоростные ракетные истребители, вообще не требующие аэродрома, а взлетающие с передвижных вертикальных станков. Это решало сразу две задачи. Простота конструкции позволяла в кратчайшие сроки, даже под массированными бомбежками и при жесточайшем дефиците, наладить их выпуск десятками тысяч штук. А отсутствие потребности в аэродроме обеспечивало малую уязвимость перехватчиков от воздушных налетов. Мобильные подразделения могли быстро перемещать пусковые станки с места на место, оставаясь абсолютно незамеченными.
Сочетание этих факторов выгодно отличало предложение Эрика Бахэма от остальных вариантов, которые, в принципе, были обычными самолетами, требовавшими гораздо больших затрат и стандартного аэродромного обслуживания, что к концу 1944 года стало непозволительной роскошью.
Применение ЖРД в качестве силовой установки обеспечивало высокую скорость и, что самое важное, большую скороподъемность. Такая конструкция, согласно расчетам, имела все шансы относительно легко прорывать истребительное заграждение и атаковать бомбардировщики.
Опыт боевого применения «комет» Мессершмитта выявил недостаточную эффективность огнестрельного оружия. Получалось, что, быстро догнав объект атаки, скоростной самолет должен был либо снизить скорость и упорно молотить из всех стволов по врагу, либо вертеться вокруг, раз за разом повторяя атаки. В любом случае самолет терял свои важнейшие преимущества — скорость и внезапность.
В авиации 30-40-х годов одним из показателей истребителя являлся вес секундного залпа, который измерялся суммарным весом пуль и снарядов, выпущенных из всего бортового оружия в единицу времени. Понятно, что чем больше этот вес, тем больший урон будет нанесен противнику. По замыслу Эрика Бахэма, мгновенно сблизившись с целью, его истребитель должен произвести залп неуправляемыми ракетами с близкого расстояния (что гарантировало уничтожение цели сразу) и упасть вниз. В падении пилот рассоединял машину (для этого применялись пиропатроны с электрозапалом, размещенные в крепежных болтах) и спускался на индивидуальном парашюте. От истребителя в воздухе отделялся двигатель и также спускался на собственном парашюте для дальнейшего использования. Остальное считалось ненужным и разбивалось о землю. В качестве силовой установки предполагалось применить ракетный двигатель «Walter HWK109-509 А-1», изначально разработанный для «Ме-163».
Сам ракетоплан целиком изготавливался из дерева. Металлическими были лишь несколько элементов: топливный бак, двигатель и бронеплиты, защищавшие кабину пилота спереди и сзади. Толщина бронестекла достигала 6 сантиметров.
Представленная конструкция была настолько простой, что могла выпускаться в любой столярной мастерской рейха. К тому же, в отличие от обычного технологического процесса авиационного производства, «ВР-20» мог изготавливаться с широким привлечением низкоквалифицированного персонала и даже подростков.
Учитывая одноразовость применения, изначально заложенную в проект, ракетоплан не имел шасси. Перед взлетом его устанавливали на вертикальную мачту высотой 24 метра. Сначала мачта изготавливалась из дерева, но скоро стали рассматриваться варианты мобильных пусковых установок. Чтобы не тратить и без того малый бортовой запас топлива на взлет, «ВР-20» должен был разгоняться четырьмя сбрасываемыми ракетными ускорителями с тягой 2 тонны каждый. Они забрасывали машину на высоту 10 километров с вертикальной скоростью 800 км/ч, где уже включался собственный ракетный двигатель с тягой 1,7 тонны и запасом топлива на две минуты полета. Хотя стартовые перегрузки не превышали 2,5 g, на этапе разгона машина управлялась автопилотом или по радио с земли.
Планировались несколько вариантов ракетного вооружения, так как первоначальный проект установки всего двух пушек «МК-108» был явно недостаточен для гарантированного уничтожения огромного четырехмоторного бомбардировщика. Поэтому выбор пал на чисто ракетное вооружение, которое могло состоять из 46 ракет калибра 55 миллиметров «R4M», или 24 ракет калибра 73 миллиметра «Hs-217», или 33 ракет типа «Orkan», установленных в специальной пусковой установке в носовой части.

Конкурсный проект «Ar E-348»

Проект «BP-20» Эрика Бахэма

Компоновочная схема перехватчика «Ва-349»
Заручившись поддержкой Технического управления Люфтваффе, Эрик Бахэм развернул кипучую деятельность, и уже в сентябре 1944 года состоялась продувка первой модели в аэродинамической трубе, а через месяц капитан Циттер выполнил полет на прототипе «Ва-349М1», который буксировался за бомбардировщиком «Не-111». Испытания показали хорошую управляемость ракетоплана, правда лишь на больших высотах и скоростях, что объясняется небольшими размерами несущих поверхностей крыла.
18 декабря 1944 года со стартовой вышки впервые взлетел беспилотный испытательный вариант, оборудованный ускорителями. Беспилотные варианты испытывались до конца января 1945 года и привели к окончательной доработке конструкции планера.
1 марта 1945 года был произведен запуск «Ва-349М23» в полностью готовом варианте, но почти сразу же после старта от перегрузок отвалилось остекление кабины и машина рухнула на землю. При ударе произошел сильный взрыв, и пилот, старший лейтенант Лютер Зиберт, погиб. До апреля 1945 года состоялось еще 34 полета, из которых семь пилотируемых прошли удачно.
Всего фирма Бахэма изготовила 34 машины «Ва-349» серий «А» и «В» и начала постройку еще трех машин серии «С» с более мощным двухкамерным двигателем «Walter HWK 509С-1». В апреле 1945 года несколько машин были даже полностью подготовлены к реальному боевому применению, но достаточно квалифицированных пилотов уже не нашлось, и новый ракетоплан «Ва-349» («Natter») так и не получил боевого крещения. К тому времени фронты окончательно развалились и то, что не удалось вывезти из-под оккупации, было уничтожено.
Тем не менее несколько готовых экземпляров достались американцам, а один захватила Красная Армия в Тюрингии.
Космические бомбардировщики Эйгена Зенгера
Как мы помним, одним из самых горячих сторонников идей Макса Валье о превращении аэроплана в космический корабль был знаменитый автомобильный магнат Фриц фон Опель. 30 сентября 1929 года он сам поднял в воздух планер с ракетными ускорителями и едва не погиб, когда этот планер загорелся. Однако список поклонников идей Валье будет неполон, если мы не вспомним австрийского инженера Эйгена Зенгера, который состоял членом «Немецкого ракетного общества», а во времена Третьего рейха предложил проект высотного бомбардировщика с ракетными двигателями.
Долгое время существовало мнение, что ракеты должны возвращаться в нижние слои атмосферы под небольшим углом, и почти до конца Второй мировой войны все расчеты строились именно на этом. Но в 1944 году доктор Эйген Зенгер в сотрудничестве с математиком Иреной Бредт, впоследствии ставшей его женой, предложили новую концепцию. Согласно их теории, ракету следовало возвращать на землю под углом, близким к прямому. Зенгер и Бредт подготовили соответствующий научный доклад, который, однако, был немедленно засекречен и в количестве 100 экземпляров разослан только наиболее крупным ученым и специалистам. Впоследствии несколько экземпляров доклада, озаглавленного «Дальний бомбардировщик с ракетным двигателем», были обнаружены специальными разведывательными группами союзников.
Зенгера интересовал вопрос, что будет, если крылатая ракета войдет в плотные слои атмосферы — скажем, на высоте 40 километров — слишком быстро и слишком круто. Из доклада было ясно, что в этом случае ракета должна рикошетировать, подобно плоскому камню, касающемуся поверхности озера. «Отскочив» от плотных слоев, ракета должна снова уйти вверх, в более разреженные слои атмосферы. Пролетев некоторое расстояние, ракета опять попадет в плотные слои и вновь рикошетирует. В целом траектория ее полета будет представлять волнистую линию с постепенно «затухающей» амплитудой. По расчетам Зенгера и Бредт, такая траектория весьма значительно повышала возможную дальность полета крылатой ракеты.
Основываясь на этом, Зенгер создал концепцию ракетного «бомбардировщика-антипода». Предполагалось, что длина его составит около 28 метров, размах крыльев — почти 15 метров, сухой вес — 20 тонн, вес топлива и бомбовой нагрузки — 80 тонн. Таким образом, полный стартовый вес доводился до 100 тонн. Но при таком весе очень много топлива требовалось бы для взлета; тут не помогли бы и стартовые ускорители. Выход, предложенный доктором Зенгером, заключался в том, чтобы построить длинный прямой стартовый трек с рельсами длиной 3 километра. Самолет помещался бы на салазки, на которых устанавливалось любое необходимое количество ракетных двигателей. Эти ракетные салазки должны были работать около 10 секунд, что позволяло разогнать самолет на треке до скорости 500 м/с. Затем он должен был набирать высоту с помощью собственного маршевого двигателя.

Бомбардировщик-«антипод» Зенгера
«Принимая скорость истечения равной 3000 м/с, — писал Зенгер, — можно довести скорость крылатой ракеты до 6000 м/с и поднять ее на максимальную высоту 260 километров».
Далее бомбардировщик должен был двигаться по описанной выше траектории. Девятая нижняя точка лежала бы в 16800 километрах от точки старта. Затем самолет в течение некоторого времени мог оставаться на высоте 40 километров, а в 23 тысячах километрах от точки старта терял бы высоту и, пролетев еще 500 километров, то есть в сумме половину расстояния вокруг Земли, совершал бы посадку.
Посадочная скорость должна была составить всего 140 км/ч, что давало возможность любому аэропорту принять такой ракетоплан. Однако бомбардировщик Зенгера мог нести только 300 килограммов полезной нагрузки, не считая пилота.
Эйген Зенгер занимался проблемой полетов и на более короткие расстояния. Основная трудность такого полета состояла в развороте ракетоплана на обратный курс. Оказалось, что развернуть самолет, идущий на скорости 1600 м/с, чрезвычайно трудно: многие приборы и агрегаты могут отказать из-за чрезмерных перегрузок, и, кроме того, для выполнения такого маневра необходимо огромное количество топлива. Гораздо легче было бы осуществить прямой полет с посадкой на базе, расположенной на «противоположном конце» Земли. В этом случае бомбардировщики стартовали бы с какой-нибудь базы в Германии, сбрасывали бы свои бомбы в заданном районе и приземлялись бы в точке-антиподе.
Схема таких полетов была рассчитана довольно точно, хотя и имела некоторые недостатки. Так, точка-антипод для любой точки старта в Германии оказывалась в районе Австралии и Новой Зеландии, то есть на территории, контролируемой западными союзниками. Кроме того, города-цели не всегда оказывались там, где этого требовал «план полета». Далее, любая бомбардировка должна была производиться с нижней точки траектории, но даже и тогда рассеивание при бомбометании оставалось бы исключительно большим. Единственным городом в Западном полушарии, который при полете из Германии по схеме Зенгера находился бы под нижней точкой траектории, являлся Нью-Йорк. При этом бомбардировщик направлялся бы в Японию или в ту часть Тихого океана, которая тогда находилась в руках японцев.
Задумывался Зенгер и еще над одной возможностью. Зачем останавливаться в точке-антиподе? Почему не облететь вокруг Земли и не вернуться на ту базу, с которой был осуществлен старт? Расчеты показывали, что для этого потребуется скорость истечения порядка 4000 м/с, которая обеспечит максимальную скорость ракеты 7000 м/с с первым пиком на высоте 280 километров и на удалении 3500 километров от точки старта и первым снижением до 40 километров на расстоянии 6750 километров от точки старта. В этом случае девятое снижение лежало бы на расстоянии 27500 километров от стартовой позиции. Посадка должна была состояться через 3 часа 40 минут после старта.
Доклад Зенгера заканчивался рекомендацией принятия схемы с одной базой, как наиболее практичной, и перечислением исследовательских проектов, которые нужно было выполнить для создания этого поистине «космического» бомбардировщика.
Легко понять, почему никто из высокопоставленных немцев, прочитавших этот доклад, ничего не предпринял для «проталкивания» идеи Зенгера: было уже слишком поздно, чтобы реализовать столь масштабный проект. Кроме того, все понимали, что даже если бы у Третьего рейха и имелись подобные бомбардировщики, то бомбовая нагрузка в 300 килограммов не имела бы большого военного значения.
Первые сведения о секретной программе нацистов по созданию летательных аппаратов совершенного нового типа появились сразу после окончания войны. В частности, утверждалось, будто бы в ракетном центре Пенемюнде были построены и испытаны какие-то «летающие диски» («Deutsche Flugscheibe»). С какого-то момента из-за нехватки рабочей силы Вальтер Дорнбергер для ряда работ стал привлекать узников специального концентрационного лагеря КЦ-А-4. И вот что рассказал один из них:
«…однажды, в сентябре 1943 года, мне посчастливилось стать свидетелем одного интересного события.
<…> На бетонную площадку возле одного из близстоящих ангаров четверо рабочих выкатили круглый, похожий на перевернутый вверх дном тазик, аппарат с прозрачной каплеобразной кабиной посередине. И на маленьких надувных колесах.
Затем по взмаху руки невысокого грузного человека странный тяжелый аппарат, отливавший на солнце серебристым металлом и вздрагивавший при каждом порыве ветра, издал шипящий звук вроде шума паяльной лампы, оторвался от бетонной площадки и завис на высоте примерно пяти метров. Недолго покачавшись в воздухе — наподобие «ваньки-встаньки», — аппарат вдруг как бы преобразился: его контуры стали постепенно расплываться. Они как бы расфокусировались.
Затем аппарат резко, как юла, подпрыгнул и змейкой стал набирать высоту. Полет, судя по покачиванию, проходил неустойчиво. Внезапно налетел порыв ветра с Балтики, и странная конструкция, перевернувшись в воздухе, резко стала терять высоту. Меня обдало потоком гари, этилового спирта и горячего воздуха. Раздался удар, хруст ломающихся деталей — машина упала недалеко от меня. Инстинктивно я бросился к ней. Нужно спасти пилота — человек же! Тело пилота безжизненно свисало из разбитой кабины, обломки обшивки, залитые горючим, постепенно окутывались голубоватыми струйками пламени. Резко обнажился еще шипевший реактивный двигатель: в следующее мгновение все было объято огнем…
Так состоялось мое первое знакомство с экспериментальным аппаратом, имевшим двигательную установку — модернизированный вариант реактивного двигателя для самолетов «Мессершмитт-262». Выхлопные газы, вырываясь из направляющего сопла, обтекали корпус и как бы взаимодействовали с окружающим воздухом, образуя вращающийся кокон воздуха вокруг конструкции и тем самым создавая воздушную подушку для передвижения машины…»
Что за странный аппарат видел заключенный концентрационного лагеря КЦ-А-4? И если диск испытывался в Пенемюнде, то не мог ли он быть часть ракетной программы Третьего рейха?..
До наших дней дошла информация о восьми технических проектах, которые можно классифицировать как проекты «летающих дисков». И читая скупые на подробности сообщения о них, не перестаешь удивляться, сколь плодовитой может быть конструкторская мысль.
Дискообразная форма летательного аппарата давно привлекает внимание аэродинамиков. В самом деле, расчет показывает, что на больших скоростях эта форма является оптимальной, вызывая наименьшее сопротивление среды. Кроме того, такой аппарат не нуждается в крыльях, сам являясь, по сути, «летающим крылом», имеющим высокую жесткость и не подверженным возникновению автоколебаний.
Первую попытку создания самолета с круглым крылом предпринял в 1909 году русский изобретатель Анатолий Георгиевич Уфимцев. Механик-самоучка, без специального образования, Уфимцев построил четыре оригинальных авиационных двигателя и два самолета под названием «Сфероплан».
«Сфероплан-1», созданный Уфимцевым летом 1909 года, имел крыло круглой в плане формы, такое же круглое горизонтальное оперение на плоской расчалочной ферме и трехколесное шасси (с носовым колесом). Аппарат был снабжен двухцилиндровым двигателем мощностью в 20 лошадиных сил. «Сфероплан» испытывался, делал пробежки, но от земли не отрывался и был перестроен в следующий, более крупный аппарат.
«Сфероплан-2» имел ту же конструкцию, но его размеры были увеличены вдвое. Новый биротативный шестицилиндровый двигатель в 60 лошадиных сил был установлен под передней кромкой крыла на вертикальной раме. Постройка «Сфероплана-2» закончилась в июне 1910 года. Но и этому аппарату не суждено было подняться в воздух. При испытаниях 11 июля самолет перевернуло и разрушило налетевшим шквалом.
В первой половине XX века конструкторы летательных аппаратов неоднократно обращались к дисковидной форме. Дисковидный аэроплан сделали в США в 1915–1916 годах. Затем в начале 30-х годов фирма «Макклери» поднимала в небо самолеты дисковидной конструкции. Летающий «треугольник» в 1939 году собрали французы, а испытывали уже немцы.
Но все эти конструкции были изготовлены в единственном экземпляре, а их летные испытания можно пересчитать по пальцам — работая с новой формой летательного аппарата, конструкторы столкнулись с целым рядом проблем, в те времена не имевших приемлемого решения. Более серьезно подошли к делу инженеры Третьего рейха.
«Модель-1» («Колесо с крылом») дискообразного летательного аппарата была построена немецкими инженерами Шривером и Габермолем еще в 1940 году, а испытана в феврале 1941 года близ Праги. Эта «тарелка» считается первым в мире летательным аппаратом вертикального взлета. По конструкции она несколько напоминала лежащее велосипедное колесо: вокруг кабины вращалось широкое кольцо, роль «спиц» которого выполняли регулируемые лопасти. Их можно было устанавливать в необходимые позиции как для горизонтального, так и для вертикального полета. Первоначально пилот располагался внутри как в обычном самолете, затем его положение изменили на лежачее. В качестве силовой установки использовались как обычные поршневые двигатели, так и двигатели Вальтера.

«Колесо с крылом» (схема)
Эта машина принесла своим конструкторам немало проблем, ибо малейший дисбаланс вызывал значительную вибрацию, особенно на больших скоростях, что и служило основной причиной аварий. Была предпринята попытка утяжелить внешний обод, но в конце концов «Колесо с крылом» исчерпало свои возможности.
«Модель-2» («Вертикальный самолет» или «Фау-7») представляла собой усовершенствованный вариант предыдущей. Конструкторы увеличили ее размеры, чтобы разместить двух пилотов, лежащих в креслах. Были также усилены двигатели, повышены запасы топлива. Для стабилизации использовался рулевой механизм, подобный самолетному.

Летающий диск «Фау-7» (схема)
Испытания «Фау-7» состоялись 17 мая 1944 года. Скороподъемность этого аппарата достигала 288 км/ч, что по тем временам было близко к рекорду; скорость горизонтального полета — 200 км/ч. Как только набиралась нужная высота, несущие лопасти изменяли свою позицию и аппарат двигался подобно современным вертолетам.
Другая модификация «Модели-2», получившая название «Дисколет», была собрана на заводе «Ческо Морава» и испытана 14 февраля 1945 года На ней был установлен жидкостно-реактивный двигатель Вальтера, а главный ротор приводился во вращение с помощью сопел, расположенных на концах лопастей.
Впрочем, этим двум проектам было суждено остаться на уровне опытных образцов. Множество технических и технологических препятствий не позволили довести их до кондиции, не говоря уже о серийном производстве.
Но конструкторы Третьего рейха не собирались останавливаться на полпути, и на свет появился очередной аппарат, намного опередивший свое время.
«Модель-3» («Диск Беллонце»), над разработкой которой работали три немецких конструктора: Беллонце, Шривер и Мите, была выпущена в двух вариантах: 38 и 68 метров в диаметре. (Скорее всего, один из этих вариантов, а возможно, и более ранний прототип видел узник лагеря КЦ-А-4.) Аппарат был окольцован установкой из 12 наклонных турбореактивных двигателей: вероятно, серийно производившиеся «Jumo-004» или «BMW-003». Они своими струями охлаждали главный двигатель и, всасывая воздух, создавали вокруг аппарата область разрежения, что способствовало его подъему с меньшим усилием.
Главный двигатель аппарата заслуживает особого внимания. Его сконструировал австрийский изобретатель Виктор Шаубергер. В корпусе двигателя размещался ротор, лопасти которого представляли собой спиралевидные стержни прямоугольного сечения. Над корпусом были закреплены мотор-стартер и генератор в кожухе. Рабочим телом в двигателе служила вода. Мотор-стартер приводил в движение ротор, который формировал быстровращающийся водяной тор. Шаубергер подчеркивал, что при определенных условиях вихрь становился самоподдерживающимся, как природный смерч. Для этого необходимо было подводить к вихрю тепло, которое поглощалось им и поддерживало его вращение. Этот процесс Шаубергер называл «имплозией» или «антивзрывом». Когда двигатель выходил на самодостаточный режим, мотор-стартер отключался, в двигатель через воздухозаборники, расположенные под днищем, подавался воздух, который сжимался и вытеснялся к центру водяного тора, выбрасываясь через центральное сопло и создавая тягу. Какая-то часть воды терялась вместе с воздухом, поэтому кроме подачи теплоты необходимо было подавать в двигатель воду. Одновременно двигатель вращал вал электрогенератора, который мог быть использован для питания системы управления и подзарядки батарей всего аппарата.

«Диск Беллонце» (схема)
19 февраля 1945 года «Диск Беллонце» совершил свой первый и последний экспериментальный полет. За 3 минуты он достиг высоты 15 километров и скорости 2200 км/ч при горизонтальном движении! Он мог зависать в воздухе и летать назад и вперед почти без разворотов, для приземления же имел складывающиеся стойки.

Двигатель Шаубергера
Аппарат, стоивший миллионы рейхсмарок, в конце войны был уничтожен. Хотя завод в Бреслау (ныне — Вроцлав), где он строился, и попал в руки советских войск, это ничего не дало. Шривер и Шаубергер сумели избежать плена.
В письме к другу в августе 1958 года Виктор Шаубергер писал:
«Модель, испытанная в феврале 1945 года, была построена в сотрудничестве с первоклассными инженерами-специалистами по взрывам из числа заключенных концлагеря Маутхаузен. Затем их увезли в лагерь, для них это был конец. Я уже после войны слышал, что идет интенсивное развитие дискообразных летательных аппаратов, но, несмотря на прошедшее время и уйму захваченных в Германии документов, страны, ведущие разработки, не создали хотя бы что-то похожее на мою модель. Она была взорвана по приказу Кейтеля».
После войны Шаубергер работал над концепцией источника энергии, основанного на создании водяного вихря в замкнутом цикле. Также он продолжал разрабатывать теорию гидротурбин и гидроустановок вихревого типа. В 1958 году конструктора пригласили в США, где ему было предложено провести работу по воссозданию «Диска Бел-донце» и «вихревого движителя», но он ответил твердым отказом.
В работах, посвященных секретным разработкам ученых Третьего рейха, можно встретить упоминание о так называемом проекте «Хаунебу-2» («Haunebu 2»). Об этом «летающем диске» мало что известно, и вполне может оказаться, что он был из ряда перспективных предложений, подобных «бомбардировщику-антиподу» Зенгера. Судя по сохранившемуся описанию, «Хаунебу-2» представлял собой дискообразный бронированный аппарат диаметром в 25,3 метра с мощной силовой установкой неизвестной конструкции, способной обеспечить полет около 55 часов на скорости в 6000 км/ч (?!). Он должен был нести экипаж из 9 человек и вооружение, состоящее из шести корабельных 200-миллиметровых установок залпового огня в трех нижних вращающихся башнях и одного 280-миллиметрового орудия в верхней башне.
Как мы видим, даже в самом общем представлении характеристики «Хаунебу-2» сопоставимы с характеристиками «Тысячелетнего Сокола», на котором летал Хан Соло в незабвенных «Звездных войнах». Перед нами самый натуральный космический истребитель, образчик технологий будущего. Впрочем, мы знаем о нем лишь из архивных бумаг. На бумаге он и остался…

Летающий диск «Хаунебу-2»
Альтернатива-1: Космический рейх
Наука уфология умеет много гитик. А люди, называющие себя уфологами, и того больше.
Мне как журналисту, работавшему на «желтую» прессу, приходилось встречаться с этими господами, и очень скоро я пришел к выводу, что постоянные размышления о таинственном и аномальном в конце концов приводят к формированию особой формы мировоззрения, когда человек начинает видеть «таинственное и аномальное» даже в самых будничных вещах. Собственно, современная уфология давно превратилась в один из подразделов конспирологии — только тезис о существовании всемирного заговора масонов здесь подменен тезисом о всемирном заговоре инопланетян. Более того, при внимательном взгляде на существующую «мифологию» уфологии можно сделать вывод о прямом плагиате — столь грубо и прямолинейно уфологи заимствуют разработки конспирологов, оборачивая их в свою пользу.
Взять хотя бы историю Третьего рейха. Любой, кто интересовался этой историей в большем объеме, нежели дают школьные учебники, наслышан об увлечении ряда нацистских бонз, включая Гитлера, разнообразными оккультными науками: спиритуализмом, астрологией, алхимией, лозоходством, черной магией и тэдэ и тэпэ. Собственно, сама организация СС, заправлявшая в Третьем рейхе, строилась по принципу оккультного Ордена. Знатоки давно подметили, что имеется определенная преемственность между старинной традицией масонства и оккультной атрибутикой Третьего рейха. На этом основании некоторые горячие головы от конспирологии поспешили объявить Гитлера и его клику прямыми подчиненными магистров масонских лож, а само появление нацистского государства — очередным зловещим экспериментом «вольных каменщиков» над многострадальным человечеством.
Не будем спорить. Пусть эта версия остается на совести «горячих голов», нас в данном случае интересует другое. Подобно конспирологам, уфологи тоже довольно необычно трактуют историю Третьего рейха. Только роль масонов в их построениях играют представители более высокоразвитой цивилизации — инопланетяне. Это может показаться странным, но большинство уфологов не верят в силу человеческого разума и с серьезным видом доказывают, что большинство технических новинок XX столетия привнесены извне. Особое подозрение вызывают аппараты типа «диска Беллонце», поскольку их дискообразная форма схожа с формой пресловутых «летающих тарелок». На следующем этапе рассуждений выдвигается версия, что все конструкторы Третьего рейха получали идеи и даже чертежи от существ из других миров!
Приводятся удивительные подробности, словно взятые из какого-нибудь фантастического романа. Будто бы еще до начала Второй мировой войны члены немецких оккультных обществ «Туле» и «Врил» вступили на астральном уровне в контакт с жителями планеты Ригель. Будто бы Адольф Гитлер и сам общался с жителями Ригеля и получал от них уникальную информацию. Будто бы под руководством инопланетных инженеров в 1944 году был построен целый флот «летающих тарелок», способных достигнуть Луны. Будто бы нацисты неоднократно высаживались на Луне и построили там базу, что косвенно подтверждается высокой активностью аномальных объектов, наблюдаемых астрономами на естественном спутнике нашей планеты в годы войны и после нее. Будто бы жители Ригеля сообщили нацистам тайны расщепления атомного ядра и те стояли на пороге создания атомной бомбы…
Стоп! А вот здесь уфологов уже заносит. Дело в том, что история атомных разработок в Третьем рейхе хорошо изучена. Самое же интересное в этой истории то, что немецкие атомщики никогда не работали над атомной бомбой. Более того, они совершенно сознательно избегали обсуждения этой темы, опасаясь, что стоит им дать соответствующее обещание военным, как их всех отправят в разновидность немецкой «шарашки», ограничив свободу научного поиска. Поэтому все работы над «тайной расщепления атомного ядра» сводились к проектированию так называемой «урановой машины», которая представляла собой довольно громоздкий атомный реактор на уране-238 и тяжелой воде в качестве замедлителя. Уран и тяжелая вода в Третьем рейхе были дефицитом, атомные физики разделились на три враждующие группировки, деньги на эксперименты выделялись неохотно — все это не способствовало успеху в деле создания «урановой машины», не говоря уже о бомбе…
Атомная бомба нацистов — это миф, один из мифов XX века, созданных на потребу публике, жаждущей дешевых сенсаций. То же самое можно сказать и о космонавтах Третьего рейха.
Если отбросить россказни уфологов и пришельцев с планеты Ригель, то вырисовывается довольно невзрачная картина. По свидетельству специалистов, работавших в Пенемюнде, большинство нацистских бонз имели смутное представление о значении тяжелых баллистических ракет. Прежде всего это объясняется тем, что сам Гитлер мало интересовался ракетной программой. За все время он только один раз побывал на испытательной станции в Куммерсдорфе.
Произошло это в марте 1939 года. Гитлеру показали диаграммы и чертежи, а Вальтер Дорнбергер доложил о работе станции. Затем Вернер фон Браун прочитал техническую лекцию, по окончании которой Гитлера пригласили на полигон и показали различные ракеты. Некоторые из них были даже запущены. Во время объяснений Гитлер ничего не говорил, к большому удивлению сотрудников станции, которые знали, что обычно при показе нового орудия или танка он проводил около них несколько часов, задавая вопросы и вникая в самые мельчайшие детали. После ленча Гитлер уехал, сухо поблагодарив хозяев за показ. Специалистам по ракетам пришлось утешиться тем, что фельдмаршал Вальтер фон Браухич, находившийся в свите Гитлера, выразил им свое удовлетворение.
Больше того, ракетная программа Третьего рейха первоначально не числилась в списке приоритетных, ее бюджет постоянно урезался, а станция Пенемюнде была вычеркнута из списка объектов особой важности по личному приказу Гитлера. Скорее всего, ракета «Фау-2» вообще никогда бы не стартовала, если бы не настойчивость Вальтера Дорнбергера, который периодически ездил в Берлин, выбивая из неуступчивых фельдмаршалов нужных специалистов и технику.
В феврале 1943 года Дорнбергера попросили приехать в министерство боеприпасов к начальнику финансового от дела профессору Геттлаге. Там ему заявили, что Пенемюнде предполагается преобразовать в частную акционерную компанию; все его акции будут временно принадлежать государству, а руководство будет осуществляться крупной промышленной фирмой. Когда Дорнбергер стал возражать, представитель министерства вооружений в Штеттине выдвинул обвинения в плохом руководстве. Дорнбергер все же сумел доказать свою правоту и на некоторое время восторжествовал, хотя с тех пор в Пенемюнде стали часто появляться люди, открыто заявлявшие, что они прибыли проверить, все ли здесь идет как надо.
В марте 1943 года, когда близилось окончание постройки первого сооружения для запуска ракет с французского берега Ла-Манша, министр вооружений Альберт Шпеер, подстрекаемый Дорнбергером, обещал еще раз доложить Гитлеру о ракетах дальнего действия. Результат был отрицательным; Дорнбергеру сообщили, что фюреру «приснилось, будто бы ни одна ракета А-4 не сможет достичь Англии».
Как мы помним, ситуацию удалось переломить лишь к лету 1943 года. Но даже запоздалое решение Гитлера считать ракетные разработки приоритетными уже не могло задержать или предотвратить скорый крах Третьего рейха.
Что касается вопросов развития космонавтики, то тут дела обстояли еще хуже. В качестве иллюстрации можно привести историю, которую рассказал бывший сотрудник Пенемюнде Вилли Лей. В своей книге «Ракеты и полеты в космос» он пишет:
«Рано утром 15 марта 1944 года Дорнбергеру из Берхтесгадена (резиденция Гитлера) позвонил генерал Буле. Дорнбергеру было приказано немедленно явиться в Берхтесгаден к фельдмаршалу Кейтелю. Когда он туда прибыл, Буле сообщил ему, что доктор фон Браун и инженеры Клаус Ридель и Гельмут Греттруп арестованы гестапо. На следующий день Кейтель разъяснил Дорнбергеру, что арестованные, вероятно, будут казнены, так как обвиняются в саботаже разработки проекта ракеты А-4. Был якобы подслушан их разговор о том, что работа над ракетой А-4 ведется ими по принуждению, тогда как их заветной целью являются межпланетные путешествия.
<…> Арестованные были освобождены благодаря заявлению Дорнбергера под присягой, что эти люди необходимы для завершения работ над проектом ракеты А-4».
Получается, что за разговоры о «межпланетных путешествиях» в гитлеровской Германии можно было запросто угодить в концентрационный лагерь или в газовую камеру, невзирая на должность, занимаемую в «приоритетной» ракетной программе. Вряд ли в подобной обстановке мог готовиться пилотируемый орбитальный полет или экспедиция на Луну.
Разумеется, если бы ракетная программа с самого начала пользовалась широкой поддержкой нацистских вождей, а Германия не пала бы в 1945 году, то раньше или позже ракетчики Пенемюнде сумели бы осуществить запуск тяжелой многоступенчатой ракеты с выводом головной части на орбитальную высоту. И тогда космическая эра человечества началась бы на десяток лет раньше и не в Советском Союзе, а в Третьем рейхе.
Но в таком случае это был бы совсем другой рейх и совсем другая история, анализировать которую нам, из сегодняшнего дня, не представляется возможным…
РАКЕТЫ И РАКЕТОПЛАНЫ СОВЕТСКОЙ РОССИИ
Ныне ведутся бесконечные споры о первенстве. Кто и что первым изобрел, кому принадлежит приоритет в той или иной области. В качестве аргументов приводятся расшифровки невразумительных анаграмм (вроде тех, которыми баловался Галилей) и еще более невразумительные дневниковые записи. Подобные споры свидетельствуют о наличии определенного комплекса неполноценности, и особенно печально, когда такой комплекс распространяется с отдельных людей на целую нацию.
На мой взгляд, самая правильная позиция в подобных спорах — нейтральная. Следует спокойно, без истерики, принимать и признавать достижения других, но и не унижать абсурдными сентенциями достижения соотечественников. В конце концов, гордиться своей принадлежностью к какой-то конкретной нации возможно только в том случае, если ты лично что-то сумел сделать для ее процветания; одного факта рождения на конкретной территории еще недостаточно. Скромнее надо быть, скромнее, и к тебе потянутся люди.
Именно на этом простеньком соображении я основывался, нарушив хронологическую последовательность в изложении материала и рассказав сначала о достижениях ракетчиков Третьего рейха. Мне представляется, что это справедливо, поскольку именно разработки Пенемюнде на многие годы вперед предопределили пути развития мировой космонавтики. Кроме того, государство под названием Третий рейх просуществовало всего лишь двенадцать лет и его история закончена — ее можно обсуждать сегодня безотносительно к перспективам и как готовую модель альтернативной, хотя и совершенно чуждой нам, инореальности. Ну а теперь пришла пора вернуться на несколько десятков лет назад и вспомнить о наших собственных достижениях в разработке стратегии завоевания космического пространства. И начнем мы, как то и принято, с Николая Ивановича Кибальчича.
«Воздухоплавательный прибор» Кибальчича
Мы помним, что с середины XIX века различными авторами выдвигались самые необыкновенные проекты использования силы реактивной отдачи в транспортных системах. Но в их ряду революционер Николай Кибальчич стоит особняком. Во-первых, он — человек ярчайшей судьбы. Во-вторых, он сформулировал новый и не встречавшийся в других проектах ракетодинамический принцип создания подъемной силы, исключавшей воздух как опорную среду.
До Кибальчича авторы проектов реактивных летательных аппаратов как в России, так и в других странах предлагали использовать принцип реактивного движения лишь для осуществления перемещения аэростата либо аэроплана в горизонтальном направлении, то есть для приведения летательного аппарата в движение. Подъемная же сила во всех без исключения проектах должна была создаваться либо за счет газа легче воздуха (аэростатический принцип), либо за счет обтекания несущих поверхностей (крыльев) потоком воздуха (аэродинамический принцип). Совершенно на ином принципе был основан летательный аппарат Кибальчича, для полета которого атмосфера не только не была необходима, но даже вредна, так как создавала дополнительное сопротивление.
Николай Кибальчич был одним из шести членов партии «Народная воля», обвиненных в убийстве царя Александра II, произошедшем 13 марта 1881 года (по новому стилю). Суд, состоявшийся с 7 по 9 апреля 1881 года в Петербурге, завершился вынесением смертного приговора всем шести обвиняемым. Организатором группы был Александр Желябов, который во время суда не упускал ни малейшей возможности выступить с обличительной политической речью. Человеком, бросившим бомбу в царя, был Николай Рысаков; участие же Кибальчича выразилось в том, что он изготовил бомбы и обучил Рысакова и других пользоваться ими.

Схема реактивного летательного аппарата Кибальчича
Кибальчич был арестован 29 марта 1881 года. Когда в один из первых дней апреля адвокат вошел в камеру Кибальчича, он, ожидавший встретить фанатичного революционера или отчаянного преступника, увидел перед собой хорошо одетого, спокойного молодого человека, погруженного в глубокое раздумье. Кибальчич думал не о своей судьбе, он был занят изобретением некоего летательного аппарата. И первые же слова, с которыми обратился он к защитнику, были просьбой добиться разрешения писать в камере.
Итогом этих раздумий стала записка, ныне известная под названием «Проект воздухоплавательного прибора». Ее приобщили к делу и положили в архив Департамента полиции, откуда она была извлечена и обнародована лишь через 36 лет — в августе 1917 года.
Согласно Кибальчичу, предложенный им «воздухоплавательный прибор» имел вид платформы с отверстием в центре. Над этим отверстием устанавливалась цилиндрическая «взрывная камера», в которую должны были подаваться свечки» из прессованного пороха. Для зажигания пороховой свечки, а также для замены их без перерыва в горении Кибальчич предлагал сконструировать особые «автоматические механизмы».
Машина сначала должна была набрать высоту, а потом перейти на горизонтальный полет, для чего «взрывную камеру» следовало наклонять в вертикальной плоскости. Скорость предполагалось регулировать размерами пороховых «свечек» или их количеством. Устойчивость аппарата при полете обеспечивалась продуманным размещением центра тяжести и «регуляторами движения в виде крыльев».
Мягкая посадка «воздухоплавательного прибора» должна была осуществляться простой заменой более мощных пороховых «свечек» на менее мощные.
Нетрудно видеть, что летательный аппарат Кибальчича принципиально был пригоден и для полетов в безвоздушном пространстве. Сам автор об этом не говорил. Он ставил перед собой более скромную задачу, что явствует из названия проекта. Никто из изобретателей ракетных транспортных систем того времени не смотрел на свое изобретение как на средство, позволяющее покинуть пределы земной атмосферы — то была тема для фантастов. И все же первый проект ракетного космического корабля был уже не за горами.
Летательные аппараты Неждановского
Почти одновременно с Кибальчичем, но совершенно независимо от него и, по всей вероятности, даже не зная о его проекте, над проблемой реактивного полета начал работать другой русский ученый-изобретатель — Сергей Сергеевич Неждановский.
Вопросами воздухоплавания Неждановский начал заниматься в конце 70-х годов, а в июле 1880 года он впервые пришел к мысли о возможности устройства реактивного летательного аппарата, о чем свидетельствует относящаяся к этому времени запись в его рабочей тетради: «Летательный аппарат возможен при употреблении взрывчатого вещества; продукты его горения извергаются через прибор вроде инжектора».
В конце 1880 года Неждановский делает уже некоторые вычисления, относящиеся к ракетному летательному аппарату, приводимому в движение за счет реакции пороховых газов. Рассчитав два варианта двигателя (при давлении пороховых газов, равном 150 и 200 атмосфер), Неждановский пришел к следующему выводу: «Думаю, что можно и не мешает устроить летательный аппарат. Он может носить человека по воздуху по крайней мере в продолжение 5 минут. Раструб, выпуская воздух с наивыгоднейшей скоростью, доставит экономию в горючем материале и увеличит время и продолжение полета».
В 1882 году Неждановский вновь возвращается к мысли о возможности устройства реактивного летательного аппарата и рассматривает различные варианты двигателей, действующих реакцией углекислого газа, водяного пара и сжатого воздуха. В частности, им была высказана мысль о возможности устройства реактивного двигателя «по принципу магазинных ружей или митральез в 2 или 3 ствола, опять-таки для того, чтобы иметь возможность управлять силою и временем полета».
В том же году Неждановский высказывает мысль о возможности устройства двух типов реактивных летательных аппаратов тяжелее воздуха — с крыльями и без них. Кроме того, им была указана возможность применения одного из предложенных реактивных двигателей, действовавшего реакцией сжатого воздуха, для горизонтального перемещения летательных аппаратов легче воздуха («воздушного шара сигарообразной формы»),
В отличие от большинства изобретателей, занимавшихся до него решением проблемы реактивного полета, Неждановский почти совершенно не занимался разработкой конструкции летательных аппаратов, уделяя основное внимание проблеме создания двигателя и поиску оптимального топлива для него.
Особого внимания заслуживает предложение Неждановского применять в качестве источника энергии взрывчатую смесь, состоящую из двух жидкостей — горючего и окислителя. В своей рукописи, относящейся к 1882–1884 годам, он писал:
«Основываясь на привилегии № 134 1880 года, можно получить взрывчатую смесь из двух жидкостей, смешиваемых непосредственно перед взрывом. Таковы азотноватая кислота N02 и керосин, первой 2 части, второго 1 часть. Таковы азотная кислота и пикриновая кислота. Этим способом можно воспользоваться для устройства летательной ракеты с большим запасом взрывчатого вещества, делаемого постепенно по мере сгорания. По одной трубке нагнетается насосом одна жидкость, по другой другая, обе смешиваются между собой, взрываются и дают струю, увлекающую воздух в раструба, действующий реакцией».
Это уже похоже на принцип работы жидкостного ракетного двигателя. Следует, однако, указать, что при этом Неждановский исходил лишь из эксплуатационных соображений. Такие важные преимущества жидкостных ракетных двигателей, как независимость их работы от условий окружающей среды и значительно большая энергоемкость по сравнению с другими известными в то время реактивными двигателями, были оставлены изобретателем без внимания.
Из всех ранних проектов космических кораблей, опубликованных в дореволюционной России, один имеет особое значение. Он принадлежит изобретателю Александру Петровичу Федорову, которого я уже упоминал в главе 1.
О жизни Федорова мало что известно, но его труд «Новый принцип воздухоплавания, исключающий атмосферу как опорную среду» стал тем малым камешком, который породил лавину.
В этой работе, опубликованной в Петербурге в 1896 году, изобретатель отмечал, что все предложенные до него проекты летательных аппаратов были так или иначе основаны на применении атмосферы в качестве опорной среды, и указывал, что его проект «идет вразрез с установившимся основным положением к разрешению задачи и пытается поставить эту последнюю на новый путь». (Заблуждение Федорова простительно, если учесть, что работы Кибальчича и Неждановского на тот момент еще не были опубликованы.)
Согласно проекту Федорова, летательный аппарат приводился в движение при помощи системы труб — одна в другой. Сжатый газ через боковые патрубки поступает в кольцеобразную полость, образуемую стенками внешней и внутренней трубы, наполняет ее, затем через отверстие внутренней трубы выходит наружу. При этом давление газа на верхнюю (закрытую) часть внешней трубы ничем не уравновешивается.
«Стало быть, — писал Федоров, — наша труба, как и ракета в полете или рывке при отдаче, получит стремление двигаться по своей оси <…>, иначе говоря, к трубе будет приложена сила, направление которой всегда, при всяком положении трубы, будет совпадать с продольной осью последней и идти от открытого конца к закрытому».
Далее он указывал: «…Если мы составим систему таких труб, в которой: 1) одни из них стоят вертикально, выпускными отверстиями вниз, 2) другие лежат горизонтально по продольной оси системы и 3) спиралями, обвивающими вертикальную ось системы, то первая группа даст нам подъем, вторая — поступательное движение, а третья — вращение вокруг вертикальной оси, т. е., иначе сказать, заменит нам руль; следовательно, наша система будет обладать всеми данными для свободного полета».
Значение работы Александра Федорова не исчерпывается содержащимися в ней идеями. Она сыграла огромную роль в истории космической техники, послужив исходным пунктом для рассуждений Константина Циолковского. Вот как рассказывает об этом сам Константин Эдуардович: «В 1896 году я выписал книжку А. П. Федорова «Новый принцип воздухоплавания…» Мне показалась она неясной (так как расчетов никаких не дано). А в таких случаях я принимаюсь за вычисления самостоятельно — с азов. Вот начало моих теоретических изысканий о возможности применения реактивных приборов к космическим путешествиям».
Ракеты и ракетные поезда Константина Циолковского
Константин Эдуардович Циолковский — одна из самых неоднозначных фигур в истории. С одной стороны, никто не может отрицать его заслуг перед человечеством на поприще разработки теоретических основ космонавтики. С другой стороны, он был активнейшим сторонником и пропагандистом людоедской философии чистки генофонда человечества, отстаивая принципы, которые привели бы в ужас даже Гитлера со товарищи. И, наверное, правильно, что человечество помнит первое и постаралось забыть второе, оставив Константину Эдуардовичу оставаться в истории на правах чистого гения, открывшего для всех нас космос.
О Циолковском написано достаточно книг, и я не буду здесь пересказывать его биографию — она хорошо известна. Наша задача состоит в том, чтобы отметить те его проекты, которые так или иначе связаны с вопросом межпланетных перелетов. Замечу, что, как это часто случается с гениями, обогнавшими свое время, ни один из проектов, предложенных Константином Эдуардовичем, так никогда и не был реализован, но зато идеи, заложенные в них, широко используются и по сей день. Время от времени даже случались «переоткрытия» Циолковского, когда вдруг выяснялось, что «новая» и активно обсуждаемая идея уже была сформулирована в одном из его трудов.
Разумеется, Циолковский тоже начинал не на пустом месте. И ранние проекты его основывались на идеях, вычитанных из книг.
Впервые мысль о возможности строительства космического корабля возникла у Циолковского в 1873 году — когда он, в возрасте 16 лет, проходил курс самообучения в Москве. Устройство для запуска межпланетного снаряда по проекту Циолковского представляло собой закрытую камеру, в которой вращалась карусель с противовесами. В нужный момент камера открывалась и снаряд выбрасывался под действием центробежной силы.
Впоследствии Циолковский перебрал практически все известные схемы космических движителей: от аэростатических до электроракетных.
В 1883 году в рукописной работе «Свободное пространство» он пришел к выводу, что единственно возможным способом перемещения в пространстве, где практически не действуют ни силы тяготения, ни силы сопротивления среды, является способ, основанный на действии реакции отбрасываемых от данного тела частиц вещества. Однако начало его серьезных теоретических изысканий в этой области относится к 1896 году. Главная заслуга Циолковского заключается в том, что он объединил техническую идею ракеты с темой межпланетных полетов, создав теорию движения космических ракет.
В 1903 году Циолковский опубликовал свой классический труд «Исследование мировых пространств реактивными приборами», в котором впервые была научно обоснована возможность осуществления космических полетов при помощи ракеты и даны основные расчетные формулы ее полета. В этой же работе было уделено большое внимание вопросу нахождения наилучшего топлива для космической ракеты. До конца XIX века находили применение лишь реактивные двигатели на твердом топливе — пороховые ракеты. Однако Циолковский показал, что для ракет дальнего действия наиболее эффективным явится двигатель, работающий на жидком топливе с окислителем, и дал принципиальную схему такого двигателя.
В то время Циолковский еще не давал конструктивного проекта своего звездолета, считая необходимой детальную проработку его идеи с принципиальной стороны. Поэтому в книге «Исследование мировых пространств реактивными приборами» 1903 года мы встречаем описание конструктивно очень простой ракеты:
«Ракета представляет металлическую продолговатую камеру, имеющую форму наименьшего сопротивления, снабженную светом, кислородом, поглотителями углекислоты и других животных выделений. Ракета предназначена не только для хранения различных физических приборов, но и для управляющего камерой человека. Камера имеет большой запас веществ, которые при своем смешении тотчас образуют взрывчатую смесь. Вещества эти, правильно и довольно равномерно взрываясь в определенном месте, текут в виде горячих газов по расширяющимся к концу трубам, наподобие рупора или духового музыкального инструмента. Трубы эти расположены вдоль стенок камеры по направлению ее длины. В одном, узком, конце трубы совершается смешение взрывчатых веществ, тут получаются сгущенные и пламенные газы. В другом, расширенном, ее конце они, сильно разредившись и охладившись от этого, вырываются наружу через раструбы с громадной относительной скоростью. Весь запас взрывчатого вещества расходуется в течение 20 мин. Труба, по которой текут газы, окружена кожухом с охлаждающей, быстро циркулирующей в нем жидкостью (водород или кислород), температура которой — около 200°.
Для того чтобы ракета при полете не вращалась, сила реакции должна проходить через центр ее инерции. Для восстановления случайно нарушенной инерции можно или перемещать какую-либо массу внутри ракеты, или поворачивать конец раструба или руля перед ним. Если управление устойчивостью вручную окажется затруднительным, то можно применить различные автоматические приспособления (жироскопы, магнитную стрелку, силу солнечных лучей и т. д.). Когда нарушается равновесие ракеты, изображение Солнца, полученное с помощью двояковыпуклого стекла, меняет свое относительное положение в ракете и возбуждает сначала расширение газа, потом электрический ток и затем передвижение масс (которых должно быть две), восстанавливающих равновесие ракеты. Жироскоп может состоять из двух быстро вращающихся в разных плоскостях кругов и также служит Для устойчивости ракеты, действуя на пружинки, которые при деформации возбуждают электрический ток и влияют на передвижение масс.
Толщина стенок трубы в случае стали будет не более 5 мм, однако она может расплавиться (температура плавления — 1300 °C), поэтому следует применить более тугоплавкое вещество, например вольфрам с температурой плавления до 3200 °C».
Значение работы Циолковского «Исследование мировых пространств реактивными приборами» трудно переоценить. Однако в первом десятилетии XX века эта книга осталась незамеченной как в России, так и за границей. Вторично она была напечатана (в значительно расширенном виде) в 1911–1912 годах в журнале «Вестник воздухоплавания».
В этой расширенной работе Циолковский впервые высказал мысль об использовании энергии распада атомов:
«Думают, что радий, разлагаясь непрерывно на более элементарную материю, выделяет из себя частицы разных масс, двигающиеся с поразительной, невообразимой скоростью, недалекой от скорости света. <…> Поэтому, если бы можно было достаточно ускорить разложение радия или других радиоактивных тел, каковы вероятно все тела, то употребление его могло бы давать, при одинаковых прочих условиях, такую скорость реактивного прибора, при которой достижение ближайшего солнца (звезды) сократится до 10–40 лет».
Одновременно он выдвинул идею создания электроракетных двигателей, указав, что «с помощью электричества можно будет со временем придавать громадную скорость выбрасываемым из реактивного прибора частицам».
В дальнейших работах Циолковский более подробно развивает и совершенствует свои проекты, не оставляя мысли о полетах в межпланетном пространстве. Вот как он описывает космическую ракету в 1914 году:
«Левая задняя кормовая половина «ракеты» состоит из двух камер, разделенных не обозначенной на чертеже перегородкой.
Первая камера содержит жидкий свободно испаряющийся кислород. Он имеет очень низкую температуру и окружает часть взрывной трубы и другие детали, подверженные высокой температуре.
Другое отделение содержит углеводороды в жидком виде. Две черные точки внизу (почти посредине) означают поперечное сечение труб, доставляющих взрывной трубе взрывчатые материалы. От устья взрывной трубы (см. кругом двух точек) отходят две ветки с быстро мчащимися газами, которые увлекают и вталкивают жидкие элементы взрывания в устье, подобно инжектору Жиффара или пароструйному насосу.
Свободно испаряющийся жидкий кислород в газообразном и холодном состоянии обтекает промежуточное пространство между двумя оболочками «ракеты» и тем препятствует нагреванию внутренности «ракеты» при быстром движении ее в воздухе.
Взрывная труба делает несколько оборотов вдоль «ракеты» параллельно ее продольной оси и затем несколько оборотов перпендикулярно к этой оси. Цель — уменьшить вертлявость «ракеты» или облегчить ее управляемость. Эти обороты быстродвижущегося газа заменяют массивные вращающиеся диски. Правое носовое изолированное, т. е. замкнутое со всех сторон, помещение заключает:
1. Газы и пары, необходимые для дыхания. 2. Приспособления для сохранения живых существ от упятеренной или удесятеренной силы тяжести. 3. Запасы для питания. 4. Приспособления для управления, несмотря на лежачее положение в воде. 5. Вещества, поглощающие углекислый газ, миазмы и вообще все вредные продукты дыхания».
Система управления ракетой осуществляется с помощью «газовых рулей» и выглядит следующим образом:
«Рули направления и поворота подобны аэропланным. Помещены они снаружи против выходного конца взрывной трубы. Они действуют в воздухе и в пустоте. Их уклонение, а вместе с тем и уклонение ракеты, происходит от давления стремительно мчащихся газов. Подобный же руль, но помещенный отдельно, может служить и регулятором вращения, т. е. он может заставить ракету вращаться в ту или другую сторону, слабее или сильнее, и остановить невольное вращение ракеты, происходящее от неправильного взрывания и давления воздуха. Его действие зависит от винтообразного скашивания пластинки руля, расположенного вдоль потока газов в трубе. Руль от скашивания принимает форму архимедова винта и тем заставляет вращаться продукты взрыва; это и служит причиною вращения ракеты вокруг ее длинной оси или остановки уже имеющегося вращения».
Любопытно описание старта и полета этой ракеты, приведенное Циолковским в работе «Космический корабль» (1924 год):
«Опишем ощущения путешественников, отправляющихся в космической ракете для блуждания кругом Земли, подобно ее Луне, также — наблюдения провожающих. Предполагается, что ракета благоустроена и хорошо исполняет свое назначение.
В ракете несколько футляров формы человека, по числу путешественников. Люди ложатся в них горизонтально по отношению к кажущейся тяжести и заливаются ничтожным количеством воды. Руки расположены тоже в жидкости, но свободнее, так что они могут управлять рукоятками приборов, расположенных также в воде. Приборы регулируют направление ракеты, состав ее воздуха, температуру, влажность, взрывание и проч.
В таком положении путешественники в течение 270 секунд взрывания немного могут заметить. Тяжесть их сильно ослаблена водой. Вода тепла. Холода нет. Окна закрыты плотно непрозрачными ставнями и видеть наружное, что вне ракеты, нельзя. Так бы должно быть.
<… >
Ракета сначала стоит на особых рельсах. Выбрана высокая местность в горах. Найден наклон почвы градусов в 20–30 к горизонту. Местность выровнена, проложены рельсы. На этих рельсах и поместили ракету.
Высота местности 5–6 кило[метров], плотность воздуха половина (0,5), рельсовый путь проложен верст на 100.
Ракета на рельсах в наклонном положении, пол с привинченными сиденьями — так же. Путешественники взошли в ракету, герметически (плотно) замкнулись. Положение крайне неудобно. Сидеть на креслах невозможно, стенки камеры везде наклонены. Значит и ходить нельзя. Можно только поместиться на легких веревочных сиденьях, вроде трапеций, что и сделали наши путешественники, изрядно повертевшись. В окна видны горы, здания, плывущие в темно-синем небе выше и ниже, облака, короче — обыкновенная картина горной местности. Началось взрывание. Оно оглушительно и нехорошо действует на нервы; но пусть наши герои будут ими крепки и не обратят на этот страшный вой никакого внимания.
Ракета покатилась по рельсам, путешественники почувствовали толчок и горизонт, как им показалось, повернулся на 60°. Он стал для них почти отвесной горой. Пол же ракеты сделался почти горизонтальным. Висячие кресла наклонились и приняли параллельное стенкам направление. Тяжесть увеличилась чуть не вдвое, и люди с ужасом завалились в кресла. Подняться с них они могли только при крайнем напряжении сил, но пока не было в этом надобности. <… >
Не прошло и двух минут, как ракета соскочила с рельсов и неслась свободно и далеко от почвы. Движение ее путники не могли заметить, но им казалось, что громадный опрокинутый горизонт проваливается со всеми своими горами, озерами и городами куда-то вниз и вместе с тем отдаляется от ракеты. <… >
Небо темнело. Стали видны планеты и более крупные звезды, несмотря на полный блеск Солнца. Оно также сияло сильнее. Месяц, едва ранее заметный, стал золотиться и сиять, как будто вымытый. Небо давно было совершенно безоблачно, облака же наклонным пологом покрывали местами такой же наклонный горизонт и мешали кое-где видеть опрокинутую землю и море. <…>
Шум в ушах угомонился, ракета как будто стояла, но они знали, что она мчится теперь вокруг Земли, как ее новая Луна, со скоростью 6–7 верст в секунду. Она вне атмосферы, за 3–4 тысячи верст от поверхности Земли. Остановиться сама собой не может; она — спутник Земли».
Следующую свою ракету 1915 года Константин Циолковский описывает так:
«Труба А и камера В из прочного тугоплавкого металла покрыты внутри еще более тугоплавким материалом, например вольфрамом. С и Д — насосы, накачивающие жидкий кислород и водород в камеру взрывания. Ракета еще имеет вторую, наружную, тугоплавкую оболочку. Между обеими оболочками есть промежуток, в который устремляется испаряющийся жидкий кислород в виде очень холодного газа. Он препятствует чрезмерному нагреванию обеих оболочек от трения при быстром движении ракеты в атмосфере. Жидкий кислород и такой же водород разделены друг от друга непроницаемой оболочкой (на чертеже не изображена). J — труба, отводящая испаренный холодный кислород в промежуток между двумя оболочками; он вытекает наружу через отверстия К — К. У отверстия трубы имеется не показанный на чертеже руль из двух взаимно перпендикулярных плоскостей для управления ракетой. Вырывающиеся разреженные и охлажденные газы благодаря этим рулям изменяют направление своего движения и таким образом поворачивают ракету».
В более поздний период жизни Циолковский в своих исследованиях в области межпланетных сообщений основное внимание уделял двум проблемам — достижению космических скоростей и нахождению оптимального топлива для ракеты. Работая над разрешением первой проблемы, Циолковский уже в 1926 году пришел к выводу, что ракета сможет достигнуть космических скоростей лишь в том случае, если получит сравнительно высокую начальную скорость без затраты своего собственного запаса топлива. Проанализировав возможные способы сообщения ракете предварительной скорости, Циолковский пришел к выводу, что «самый простой и дешевый в этом случае прием — ракетный, реактивный». Исходя из этого, он предложил применить для достижения космических скоростей двухступенчатую ракету, первая ступень которой (по терминологии Циолковского — «земная ракета») должна была двигаться по Земле и в плотных слоях атмосферы.

Схемы ракет Константина Циолковского
Циолковским был также произведен расчет запаса топлива, массы конструкции, скорости и других параметров каждой ступени.
Дальнейшее развитие теория многоступенчатых ракет получила в книге Циолковского «Космические ракетные поезда» (1929 годы) и в одной из глав рукописи «Основы построения газовых машин, моторов и летательных приборов», которая при жизни ученого так и не была опубликована.
Циолковский предложил два способа достижения космических скоростей: при помощи ракетного поезда и при помощи эскадрильи ракет. Оба способа имели много общего и заключались в том, что в полет отправлялось несколько ракет, из которых конечной цели достигала только одна. Остальные же ракеты играли роль ускорителей и после израсходования топлива возвращались на Землю.
Однако при первом способе (космический ракетный поезд) ракеты соединялись последовательно, одна за другой, и работала только одна головная ракета. После израсходования топлива головная ракета отделялась от ракетного поезда, после чего начинала работать вторая ракета, ставшая теперь головной, и так далее.
При втором способе (эскадрилья ракет) ракеты соединялись параллельно и работали все одновременно, но использовали топливо не целиком, а лишь наполовину. После этого топливо одной части ракет сливалось в полупустые баки другой части ракет, которые продолжали дальнейший путь с полным запасом горючего. Пустые же ракеты отделялись от эскадрильи и возвращались на Землю. Процесс переливания продолжался до тех пор, пока от эскадрильи не оставалась одна ракета.
Рассмотрим проект ракетного поезда, предложенный Циолковским.
Сразу же оговорив, что проект представлен в самом общем виде, Константин Эдуардович переходит к характеристикам ракеты, составляющей «ракетный поезд». Ее поперечник составляет 3 метра, длина — 30 метров, толщина стенок — 2 миллиметра, общий вес ракеты с полезной нагрузкой — 9 тонн. Запас взрывчатых веществ на всю ракету весит 27 тонн. Объем обитаемого пространства составляет 78 м3. Если экипаж будет состоять из 10 человек, то каждому достанется около 8 м3, или кубическая комната с ребром в 2 метра. Кислорода при удалении продуктов дыхания должно хватить на 16 дней полета.
Так как всем ракетам, составляющим «поезд», предстоит планирование при возвращении на Землю, то каждая ракета имеет следующее устройство.
«Одиночная надутая оболочка, — пишет Циолковский, — имеющая по необходимости форму точеного на токарном станке тела (тела вращения), планировать будет слабо. Надо соединить, например, три таких поверхности. Надутые воздухом или кислородом примерно до двух атмосфер, они представят собою весьма прочную балку. Крылья мы не можем предложить вследствие значительного их веса».
В качестве главного элемента управления используются рули: направления, высоты и противодействия вращению. Они должны действовать не только в воздухе, но и в пустоте. Рули находятся в задней части каждой ракеты. Их две пары. За ними расположены «взрывные» трубы числом не менее четырех. Направление выхлопа в сторону, чтобы не задеть заднюю ракету.
Носовая часть замыкающей ракеты «поезда» занята людьми. Наблюдение за окружающим пространством осуществляется через маленькие кварцевые окна — они нужны для оперативного управления ракетой в момент старта. Большие окна обозрения до момента выхода за пределы атмосферы закрыты ставнями.
За жилым помещением следует машинное отделение (насосы и двигатели для них), наконец, кормовая часть занята взрывными трубами и окружающими их баками с нефтью. Последние окружены баками со свободно испаряющимся жидким кислородом
Вот как описывает Циолковский старт «ракетного поезда»:
«Дело происходит приблизительно так. Поезд, положим, из пяти ракет, скользит по дороге в несколько сот верст длиною, поднимаясь на 4–8 верст от уровня океана. Когда передняя ракета почти сожжет свое горючее, она отцепляется от четырех задних. Эти продолжают двигаться с разбегу (до инерции), передняя же уходит от задних вследствие продолжающегося, хотя и ослабленного взрывания. Управляющий ею направляет ее в сторону и она понемногу спускается на Землю, не мешая движению оставшихся сцепленными четырех ракет.
Когда путь очищен, начинает свое взрывание вторая ракета (теперь передняя). С ней происходит то же, что и с первой: она отцепляется от задних трех и сначала обгоняет их, но потом, не имея достаточной скорости, поневоле возвращается на планету.
Так же и все другие ракеты, кроме последней. Она не только выходит за пределы атмосферы, но и приобретает космическую скорость. Вследствие этого она или кружится около Земли как ее спутник, или улетает далее — к планетам и даже иным солнцам».
Как видите, «ракетный поезд» Циолковского — это вовсе не современная многоступенчатая ракета-носитель.
Идея «эскадрильи ракет» была сформулирована в главе «Наибольшая скорость ракеты» из работы «Основы построения газовых машин, моторов и летательных приборов», опубликованной в 1947 году.
Работа эта примечательна еще и тем, что в ней Константин Эдуардович выступает вразрез со своими предыдущими заявлениями, исключающими ракетный аэроплан как еще один путь возможного развития космической техники.
Подавляющее большинство историков космонавтики сходятся на том, что, несмотря на многообразие идей, выдвинутых Циолковским, он все же сумел сконцентрироваться на «единственно верном» направлении — разработке теории мощных ракет с жидкостным двигателем. Однако это не совсем так. В работе «Наибольшая скорость ракеты» Циолковский как раз анализирует способ достижения космических скоростей посредством ракетоплана. В сущности, упомянутая «эскадрилья ракет» — это несколько ракетопланов, часть которых являются «заправщиками», осуществляя дозаправку «космического ракетоплана» по мере подъема над Землей.
Более того, в этой работе Циолковский приводит приблизительную программу поэтапного совершенствования ракетопланов: от первого «несовершенного и слабого реактивного аэроплана» до группы ракетопланов из 16 машин, способных осуществить выход за пределы атмосферы. Все это напоминает нам «дерзновенные мечтания» Макса Валье, однако вряд ли Константин Эдуардович опирался на труды немецкого популяризатора — скорее всего, к необходимости изменения взглядов в пользу ракетоплана его подвел Фридрих Цандер.
В работе «Основы построения газовых машин, моторов и летательных приборов» Циолковский, в частности, пишет, что его предыдущие проекты (разгонные железнодорожные эстакады и ракетные поезда) осуществимы, но на данном этапе (речь, напомню, идет о 30-х годах) они слишком дороги. Далее Константин Эдуардович рассказывает читателю, как можно быстро и дешево достичь космических скоростей:
«Прием же группы первых слабых машин и переливание взрывчатых веществ гораздо доступнее для состояния умов современного человечества. Уже один ракетоплан побудит к последующему опыту с двумя одинаковыми и несовершенными приборами.
Сами по себе они ценны, т. е. и в одиночку могут служить народам. Опыты с несколькими ракетопланами будут производиться между прочим, как интересные трюки. Но эти трюки приведут неизбежно к получению космических скоростей.
Итак, основа этого успеха — получение первого, хотя бы и плохого ракетоплана. Построение таких же одинаковых снарядов двинет дело увеличения скоростей, которому как бы нет предела».
Гениальный ученый, видимо, не понимал, что тиражирование «плохих» ракетопланов, скорее, вредит делу достижения космических скоростей, дискредитируя саму идею. Но жил в России человек, который считал, что ракетопланы должны быть хорошими, потому что именно им суждено стать тем транспортным средством, которое позволит человеку подняться за пределы атмосферы. Этого человека звали Фридрих Артурович Цандер.
Вопросами межпланетных сообщений Цандер начал интересоваться очень рано. Уже в детские годы он с увлечением читал научно-фантастические книги о путешествиях на другие планеты и мечтал о полетах к звездам.
Начало научных изысканий Цандера в этой области относится к 1907–1908 годам, когда он впервые стал задумываться над такими вопросами, связанными с устройством космических кораблей, как «условия, определяющие форму корабля, место для горючего, переработка солнечного тепла, выбор движущей силы» и так далее. Тогда же им были сделаны первые расчеты, относящиеся к истечению газов из сосудов, к работе, необходимой для преодоления притяжения Земли, и некоторым другим вопросам, связанным с проблемами космонавтики, а в 1909 году им была впервые высказана мысль о желательности использования твердого строительного материала ракеты в качестве горючего — принцип так называемой «самосжигаемой» ракеты. Впоследствии Цандер неоднократно возвращался к этой идее. Например, в своей поздней работе «Проблема полета при помощи реактивных аппаратов» (1932 год) он описывает этот проект следующим образом:
«Центральная ракета, окруженная множеством боковых ракет и сосудов для горючего в кислорода
На чертеже представлена схема одной центральной ракеты и многих боковых сосудов и боковых ракет, нанизанных на ветвях расходящихся спиралей. Два боковых сосуда показаны находящимися уже внутри центральной ракеты для расплавления. Если нанизывать все большее число боковых ракет и сосудов на ветви спирали, то и высота полета все больше увеличивается. Ветви спирали могут состоять из труб, по которым, пользуясь особой клапанной системой, можно перевести как горючее, так и кислород для горения. <…> В носовой части видны сосуды для горючего и жидкого кислорода, внутри их имеется поплавок, который при опоражнивании сосуда рычагом освобождает пружины, которые закрывают и открывают клапаны по мере необходимости и дают скользить сосуду в центральную ракету для расплавления. И здесь можно себе представить громадное количество вариантов, а также и такую схему, при которой ряд центральных ракет летит вместе, причем они в дальнейшем попадут в одну наиболее центральную ракету, т. е. повторяется процесс, описанный выше. Ввиду того, что отдельные сосуды и боковые ракеты можно делать складываемыми как зонт, они могут сначала весить значительно больше центральной ракеты и все же расплавляться в ней, так что можно себе представить, что вес к концу полета будет равен лишь одной тысячной доле начального веса, т. е. одна часть получит энергию с 999 сжигаемых частей; такого большого расхода горючего не требуется даже для перелета на другую планету. <…> Можно в данном случае устроить полет также без всякого жидкого горючего, тогда отдельные части конструкции можно делать особо крепкими и все толстые части затем использовать в качестве горючего, так что окончательный вес из-за некоторой сложности конструкции не увеличится при данном начальном весе».

Схема одной центральной ракеты со многими ракетами и сосудами для жидкого горючего и кислорода (по Цандеру)
Фридрих Цандер был убежденным сторонником экономии в деле строительства космического корабля. Он не воспринимал атмосферу как препятствие, изыскивая способы использовать ее ресурсы для облегчения подъема на орбитальную высоту. Понятно, что очень скоро он пришел к необходимости замены простой ракетной схемы ракетопланом с комбинированной двигательной установкой.
Признавая в своих работах авторитет и приоритет Циолковского, Цандер открыто полемизирует с ним, доказывая преимущества своего проекта.
В самом общем виде этот проект выглядит так. Межпланетный корабль Цандера служил фюзеляжем большого самолета и, кроме того, снабжался дополнительно небольшими крыльями, предназначенными для спуска. При полете в низших, более плотных слоях атмосферы в качестве силовой установки должен был служить либо разработанный Цандером поршневой двигатель особой конструкции, работавший на бензине и жидком кислороде, либо воздушно-реактивный двигатель, использовавший в качестве окислителя кислород окружающего воздуха.
При достижении же высоких разреженных слоев атмосферы должны были включаться жидкостные ракетные двигатели, а ставшие ненужными части большого самолета, изготовленные из металлов с высокой теплотворной способностью, должны были втягиваться в корпус и расплавляться с тем, чтобы использоваться в качестве дополнительного горючего. Для спуска на Землю или другие планеты, обладающие атмосферой, должны были служить добавочные малые крылья, дававшие возможность совершать посадку без каких-либо затрат горючего.


Схема межпланетного корабля системы Цандера

Модель межпланетного корабля системы Цандера
Вот описание межпланетного космического корабля на основе аэроплана с жидкостным ракетным двигателем и сжигаемыми частями, приведенное в одной из работ Цандера:
«На чертеже <… > дана разработанная мною схема аэроплана, у которого наружные части могут втягиваться при помощи конических барабанов с образующей соответственной формы, на которые наматываются тросы, втягивающие секции крыльев и все остальные части в сосуд для расплавления и использования в качестве горючего. Ввиду того, что пути отдельных частей составляют в среднем не больше 5–8 м, барабаны выходят малыми; части аэроплана, которыми при этом можно воспользоваться, мною были до некоторой степени исследованы и рассчитаны на крепость; оказывается, что такой аэроплан мог бы взять в счет веса разбираемых соединений с собою приблизительно лишь на 10 % от общего веса аэроплана меньше жидкого горючего, чем обыкновенный аэроплан. Крылья аэроплана состоят из отдельных секций, находящихся в особой раме; они занижают наибольшую площадь из тех [частей], которые подлежат перемещению; но в некоторых конструкциях аэропланов для увеличения скорости полета площадь крыльев может уменьшаться во время полета до 1/3 части нормальной величины, так что произведенное здесь перемещение — только один шаг вперед. Остальные части: рули большого аэроплана и высокую подставку втягивать, по моим подсчетам, уже нетрудно. К концу полета от аэроплана может оставаться только корпус; на нем маленькие крылья <… > и маленькие рули. Некоторые части корпуса также могут еще быть, в случае необходимости, после значительного уменьшения веса корабля использованы в качестве горючего. <… > Схемы складывания и втягивания частей, а также и порядок производства этих работ могут быть самыми разнообразными, и здесь представляется изобретательству еще широкое поле. Начинать сжигание надо с наименее необходимых и наиболее дешевых частей. Во многих случаях может потребоваться сжигание лишь небольшого количества частей, а не всех имеющихся. Необходимо стремиться к наибольшей простоте и дешевизне сжигаемых деталей. По мере усовершенствования количество сжигаемых частей будет уменьшаться, ко пока идет вопрос о «завоевании» межпланетного пространства, цена одного аэроплана будет играть лишь весьма незначительную роль.
Другие методы для отлета с земного шара еще не достигают цели, а при предложенном здесь методе можно себе легко представить окончательный вес опорожненного летательного аппарата равным лишь одной сотой части полного веса, т. е. порожний летательный аппарат будет получать тепловую энергию с веса, который в 99 раз больше его веса. Это при рассмотренных выше конструкциях реактивных двигателей дает полную гарантию для достижения межпланетных скоростей».
Как видите, Цандер старался сделать предельно экономичную схему. Он всячески подчеркивает, что простая ракета конструкции Циолковского или Оберта слишком дорога, чтобы использовать ее как средство для межпланетных перелетов:
«Для полета в высшие слои атмосферы, а также для спуска на планеты, обладающие атмосферою, будет выгодно применять аэроплан, как конструкцию, поддерживающую межпланетный корабль в атмосфере. Аэропланы, обладающие способностью производить планирующий спуск в случае остановки двигателя, во многом превосходят парашют, предлагаемый для обратного спуска на землю Обертом в его книге: «Ракета к планетам».
При парашюте отпадает возможность свободного выбора места спуска и дальнейшего полета в случае временной остановки двигателя, так что его следовало бы применять лишь для полетов без людей. Ту же часть ракеты, которою управляет человек, необходимо снабжать аэропланом. Для спуска же на планету, обладающую достаточной атмосферой, пользоваться ракетой, как это предлагает К. Э. Циолковский, также будет менее выгодно, нежели пользование планером или аэропланом — с двигателем, ибо ракета израсходует на спуск много горючего, а спуск с нею будет стоить, даже при ракете на одного человека, десятки тысяч рублей. Между тем как спуск на аэроплане стоит лишь несколько десятков рублей, а на планере и совсем ничего не стоит. Произведенные же расчеты ясно указывают на полную возможность медленного безопасного планирующего спуска на землю».
Цандер также указывает на то, что в 1920-е годы накоплен изрядный опыт в производстве самолетов, и использование этого опыта гораздо скорее приблизит наступление космической эры, нежели проектирование и отработка мощных и дорогих ракет.
Стремление Фридриха Цандера максимально снизить стоимость межпланетного перелета проявилось и в его работах, посвященных космическим кораблям, использующим для своего движения давление солнечных лучей или электростатическое взаимодействие. Цитирую по статье Цандера «Перелеты на другие планеты» 1924 года:
«При желании перелететь на другие планеты необходимо довести скорость полета до 11,18 км/сек. В этом случае можно воспользоваться ракетой, ко, вероятно, выгоднее будет лететь при помощи зеркал или экранов из тончайших листов. Экраны должны вращаться вокруг их центральной оси для придания им жесткости. Зеркала не требуют горючего и в случае надобности могут быть использованы в ракете в качестве топлива. Это два преимущества зеркал; кроме того, они не производят больших напряжений в материале корабля и имеют меньший вес, нежели ракета вместе с горючим. Но зато зеркала могут быть легче взорваны метеорами, нежели ракета.
<… > Взамен экранов можно будет, по всей вероятности, применять кольца, по которым течет электрический ток, причем внутри кольца будет расположена железная пыль, удерживаемая вблизи плоскости кольца силами электрического поля. Пылинки должны быть наэлектризованы статическим электричеством для того, чтобы они держались на некотором расстоянии друг от друга.
Если солнечный свет упадет на зеркало, экран или пылинки, он произведет на них определенное давление. При огромных расстояниях межпланетных пространств малые силы дают сравнительно большие скорости полета.
<…> Если в межпланетном пространстве будут устроены огромные вогнутые зеркала, которые будут вращаться вместе с астрономическими направляющими трубами вокруг планет, то солнечный свет, собранный зеркалами и направленный на пролетающий на другую планету межпланетный корабль, даст скорости, превышающие во много раз скорости ракет».
Таким образом, Цандер одним из первых выдвинул идею «солнечного паруса», об истории и области применения которого мы подробно поговорим в главе 19.
Однажды к писателю Алексею Толстому зашел председатель первого советского «Общества изучения межпланетных сообщений» Григорий Крамаров. Писатель жил в небольшой комнате с полками, заваленными книгами. На тумбочке Крамаров заприметил пачку толстых тетрадей и поинтересовался, что в них содержится.
«Это мои расчеты воздушного реактивного корабля и пути его следования на Марс», — охотно признался Толстой.
«Почему именно на Марс?» — спросил Крамаров.
«Предполагается, что на Марсе имеется атмосфера и возможно существование жизни. К тому же, — добавил писатель, — Марс считается красной звездой, а это эмблема нашей советской Красной Армии…»
Так на свет появился роман «Аэлита». Ныне принято считать, что прототипом инженера-самоучки Мстислава Лося, построившего ракету на Марс, был Фридрих Цандер. Для подобною утверждения есть серьезные основания, так как в начале 20-х годов инженер Цандер был широко известен в кругах московской интеллигенции как активнейший популяризатор идеи межпланетных полетов, а его лозунг «Вперед, на Марс!» употреблялся к месту и не к месту.
Именно Цандеру удалось привлечь внимание правительства большевиков и даже самого Ленина к проблемам энтузиастов космонавтики. Встреча Цандера с «кремлевским мечтателем» состоялась в декабре 1920 года. Ленин оказался среди слушателей доклада Фридриха Артуровича. Выслушав рассказ Цандера об условиях, в которых окажется космонавт, узнав, что поможет ему выдержать ускорение, как он будет одеваться и питаться, Ленин спросил: «А вы полетите первым?» И, услышав утвердительный ответ, крепко пожал руку изобретателю. Чтобы не возникло кривотолков, замечу, что эту историю рассказывал сам Цандер.
Пользуясь тем, что Ленин обещал ему поддержку, Цандер принял самое деятельное участие в организации «Общества изучения межпланетных сообщений» и стал впоследствии членом его президиума. Любопытно, что действительным членом «Общества» числился Феликс Дзержинский, всемогущий глава ВЧК!
Но Цандер выступал не только как генератор необычных идей и общественный деятель. Начиная с 20-х годов он все большее внимание удаляет еще одному направлению своих изысканий — разработке теории расчета реактивных двигателей. Здесь Цандер выступает как талантливый инженер, давший оригинальное решение ряда весьма важных вопросов, связанных с проектированием реактивных двигателей. Им были написаны такие работы, как «Тепловой расчет жидкостного ракетного двигателя», «Применение металлического топлива в ракетных двигателях», «Вопросы конструирования ракеты, использующей металлическое топливо» и другие.
В 1928 году Цандер приступает к практическому осуществлению своих замыслов в области ракетной техники. Не оставляя мысли об использовании высококалорийных металлов в качестве дополнительного горючего, он проводит опыты по изготовлению легких сплавов, содержащих магний, и сжиганию их в воздухе.
Примерно в это же время Цандер, устроившись в Винтомоторный отдел Центрального аэрогидродинамического института (ЦАГИ), начинает проектирование своего первого реактивного двигателя «ОР-1» (сокращение от «Опытный Реактивный»), с помощью которого инженер предполагал практически проверить принятые им методы расчета и получить первые экспериментальные результаты.
Двигатель «ОР-1» был собран в 1930 году. Он работал на бензине и газообразном воздухе и развивал тягу до 5 килограммов. В период с 1930 по 1932 год Цандер провел большое количество испытаний этого двигателя.
Результаты, полученные при этих испытаниях, дали возможность перейти к созданию более совершенных двигателей, в которых в качестве окислителя применялся жидкий кислород.
С 1932 года в ГИРДе (Группа изучения реактивного движения) под руководством Цандера велась работа по созданию жидкостных ракетных двигателей, предназначенных для установки на ракетоплане «РП-1» (двигатель «ОР-2») и в качестве силовой установки ракеты «ГИРД-Х» (двигатель «10»).

Схема двигателя «ОР-1», разработанного Фридрихом Цандером:
1 — свеча зажигания; 2 — камера сгорания; 3 — форсунка для подачи горючего; 4 — реактивное сопло; 5 — штуцер для подвода сжатого воздуха; 6 — медная трубка для бензина; 7 — манометр
Преждевременная смерть не дала Цандеру довести до конца многое из задуманного, но это сделали его многочисленные соратники, ученики и последователи, составившие целую школу в советской космонавтике.
Межпланетные корабли Юрия Кондратюка
Когда изучаешь историю российской (или, если угодно, советской) космонавтики, то невольно приходишь к выводу, что нашей стране самой судьбой (или, если угодно, Богом) было предначертано стать космической державой. Допустим, Константин Циолковский так бы и остался безвестным школьным учителем, склеивающим из бумаги причудливые модели. Допустим, Фридрих Цандер предпочел бы всю жизнь заниматься винтомоторными самолетами. Но и в этом случае оставался резервный вариант! И вполне возможно, сегодня мы изучали бы в школах не биографию Циолковского, а биографию Юрия Васильевича Кондратюка, восхищаясь его талантом и даром технического предвидения. Сегодня его лишь упоминают в списке пионеров ракетостроения, а ведь этот человек, живший вдали от столиц и ничего не знающий о Циолковском, Цандере, Оберте или Годдарде, сумел создать свою собственную теорию ракет для межпланетного полета.
Жизнь и научная деятельность Юрия Кондратюка (подлинное имя — Александр Игнатьевич Шаргей) до настоящего времени изучены очень слабо. Долгое время была известна лишь одна его работа, посвященная проблемам астронавтики, — книга «Завоевание межпланетных пространств», изданная на средства автора в 1929 году в Новосибирске. И лишь в послевоенные годы стало известно, что сохранилось еще несколько рукописей Кондратюка по вопросам межпланетных сообщений, которые в 1938 году были переданы автором известному историку авиации Воробьеву.
Изучая рукописи Кондратюка, можно наблюдать, как постепенно, на протяжении ряда лет, формировались его взгляды на проблемы освоения космического пространства, как от первых наивных выводов Кондратюк пришел к взглядам, нашедшим отражение в книге «Завоевание межпланетных пространств».
Первый вариант рукописи Кондратюка по межпланетным сообщениям, датируемый 1916–1917 годами, носит характер черновых записей, в которых автор нередко ошибается, спорит сам с собой, в ряде случаев переписывает и пересчитывает отдельные разделы. Однако уже в этих ранних набросках встречается ряд интересных высказываний.
Проанализировав такие известные ему проекты приспособления для запуска пилотируемого межпланетного снаряда, как электрическая пушка «длиною в несколько сот верст» и гигантская праща, Кондратюк пришел к выводу, что наиболее подходящим средством для выхода в межпланетное пространство является «реактивный прибор».
Далее Кондратюк, как и Циолковский, поставил перед собой задачу — вывести основную формулу полета ракеты, чтобы ответить на вопрос: «Возможно ли совершать межпланетный полет на реактивном приборе при существующих ныне известных веществах?»
Проведя соответствующие расчеты, он повторно вывел (несколько иным способом, чем Циолковский) основную формулу полета ракеты (формулу Циолковского) и установил, что скорость полета ракеты в пустоте зависит лишь от скорости истечения продуктов сгорания, определяемой свойствами топлива, и от соотношения начальной и конечной массы.
Придя к выводу, что полет на другие планеты при помощи ракеты принципиально возможен, Кондратюк приступает к уточнению ряда вопросов, связанных с полетом в космическое пространство. В своей первой рукописи он рассматривает такие вопросы, как влияние сил тяготения и сопротивления среды, выбор величины ускорения и способов отлета, устройство отдельных частей межпланетного корабля, его управляемость и устойчивость.
Проект «реактивного прибора» Кондратюка выглядел так:
«Снаряд состоит из камеры, где находятся пассажиры и приборы и сосредоточено управление, сосудов, где находится активное вещество, и трубы, в которой происходит сгорание и расширение активного вещества и его газов. Сосуд для активного вещества нужно делать не один, а несколько, потому что такой один сосуд был бы значительного веса и к концу полета, когда почти все активное вещество вышло, составлял бы массу, которая, совершенно не будучи нужной, может быть, в несколько раз утяжеляла бы снаряд и требовала бы большого количества активного вещества и даже могла бы сделать невозможным все предприятие. Поэтому сосудов нужно делать несколько, разных размеров. Вещество расходуется сначала из больших сосудов, когда они кончаются, то просто выбрасываются, и начинают расходовать из следующего. Размеры сосудов нужно рассчитывать таким образом, чтобы вес кончающегося сосуда (одного сосуда без вещества) составлял для всех сосудов одну и ту же часть веса всей остальной оставшейся ракеты. Какую часть — это нужно выработать, сообразуясь, во-первых, с тем требованием, чтобы эта часть была возможно меньшей; во-вторых, с тем, чтобы число сосудов не было чересчур велико и таким образом не усложнилось бы чересчур устройство снаряда. На чертеже схематически представлена удобнейшая, по-моему, форма снаряда — камера, приблизительно крутая — сосуды в виде слоев конуса (приблизительно подобных). В виде слоев они сделаны для того, чтобы иметь меньшее протяжение по направлению ускорения, чтобы в них не получалось большого давления (высокого столба жидкости). Конус не выгодно делать ни слишком широким, ни слишком длинным — в обоих случаях должна будет увеличиваться прочность сосудов по расчету на ускорение, а в первом — и по расчету на давление (активное вещество — жидкие газы <…>).
Чтобы было возможно сделать дно сосудов более плоским, не утяжеляя их, возможно, что будет удобнее провести к ним тяжи из точки приложения силы а (давление газов на трубу), к которой посредством тяжей и прикреплены все сосуды и в которую упирается труба.
Если по каким-либо причинам жидкие кислород и водород держать вместе в смеси будет нельзя, то в каждом сосуде нужно сделать два отделения одно над другим. Соответственно нескольким сосудам и труба должна меняться при сбрасывании старых сосудов — отбрасываться последнее ее колено и передвигаться место сжигания, или вся она должна заменяться новой — это уж как из опытов будет найдено удобнее. Камера, разумеется, герметическая, хорошо согреваемая, с приборами, освежающими воздух.
Нужно испробовать, может ли человек дышать кислородо-водородной атмосферой; если да, то многое упрощается».
Таким образом Кондратюк уже в первой своей работе предложил многоступенчатую ракету, работающую на кислороде и водороде.

Схематический разрез реактивного снаряда Кондратюка
Рассуждая ниже о способах возвращения снаряда на Землю, Кондратюк приводит схему спускаемого аппарата, помещенного в специальный жаропрочный футляр, похожий на «вытянутое ядро», с внутренней системой охлаждения. В более поздних работах возвращаемый аппарат выглядит иначе — теперь он использует атмосферу для гашения скорости, спускаясь к Земле по сужающейся спирали. На конечном этапе возвращаемый аппарат должен, по замыслу Кондратюка, выглядеть следующим образом:
«1) камера пилота; 2) поддерживающая поверхность эллиптической формы, о конструкции которой будет ниже; большая ось эллипса должна быть перпендикулярна траектории, а малая — наклонна под углом а (около 40°), дающим наибольшую подъемную силу; 3) длинное хвостовище, отходящее от камеры пилота назад под углом а к малой полуоси эллипса поддерживающей поверхности; на конце — хвост в виде двух плоских поверхностей, составляющих двугранный угол около 60°, ребро которого параллельно большой оси эллипса поддерживающей поверхности, а равноделящая плоскость параллельна траектории; 4) поверхность для автоматического поддержания боковой устойчивости в виде угла, подобного хвосту, но с меньшим растворением (около 45°), расположенного над камерой пилота и обладающего ребром, перпендикулярным траектории и ребру хвоста. Эта поверхность автоматически поддерживает боковое равновесие снаряда, поворачиваясь вправо и влево вокруг своего ребра, будучи управляема жироскопом, находящимся в камере пилота. Ось жироскопа заранее устанавливается параллельно оси вращения Земли. <…> Все указанные наружные части должны быть взяты на ракету при отправлении в разобранном виде и затем собраны до того момента, как орбита пройдет хотя бы своей ближайшей к Земле частью через атмосферу ощутимой плотности. Планероподобный снаряд описанной конструкции (от планера он отличается более всего весьма большим углом атаки, устройством хвоста и приспособлением боковой стабилизации) будет обладать свойством всегда держаться в слоях атмосферы такой плотности, что при данной его скорости вертикальная слагающая давления воздуха на поддерживающую поверхность будет равна кажущейся тяжести снаряда».

Схема возвращаемого аппарата Кондратюка
Этот аппарат заметно отличается от ракетопланов Цандера, но сама мысль об использовании особой аэродинамической схемы взамен «ракеты в футляре» весьма примечательна
В своих работах Кондратюк говорит и о возможности использовании солнечной энергии и применении для этой цели особых зеркал. Но в отличие от Цандера он предлагал использовать не силу давления солнечных лучей, а тепловую составляющую солнечного излучения для подогрева рабочего вещества движителя.
Согласно Кондратюку, параболическое зеркало концентрирует в своем фокусе солнечные лучи, нагревая приемник тепла, в котором может осуществляться реакция выделения водорода и кислорода из воды. Полученный путем разложения гремучий газ направляется в «двигатель внутреннего сгорания».
Помимо применения концентрирующих зеркал на межпланетном корабле, Кондратюк мечтал о том, чтобы вывести такие зеркала на орбиту с целью обогрева Земли или даже терраформировать с их помощью другие планеты.
«Допустим, мы умеем выделывать дешевые и легкие складные зеркала (плоские). Сделаем зеркала большой величины и в огромном количестве (я не думаю, чтобы десятина зеркала весила более нескольких десятков пудов). Препроводим их на ракетах и приведем их в такое состояние, чтобы они стали земными спутниками. Развернем их там. Соединим в еще большие общими рамами. Станем управлять ими (поворачивать) каким-либо образом, например, поставив в узлах их рам небольшие реактивные приборы, которыми будем управлять посредством электричества из центральной камеры.
Если эти зеркала будут исчисляться десятинами, то можно взять подряд на освещение столиц. Но, если привлечь к этому огромные средства, если наделать зеркал в огромных количествах и пустить их вокруг Земли так, чтобы они всегда (почти) были доступны солнечному свету, то можно ими согревать части земной поверхности, можно обогреть полюса тундры и тайги и сделать их плодородными. Может быть даже, пользуясь огромными количествами доставляемого ими тепла и энергии, можно было бы приспособить для жизни человека какую-нибудь другую планету, удалить с нее вредные элементы, насадить нужные, согреть. Теми же зеркалами, употребленными как заслонками, можно было бы охлаждать что угодно, заслоняя от него Солнце. Наконец, сконцентрировав на каком-нибудь участке Земли солнечный свет с площади в несколько раз большей, можно этот участок испепелить. Вообще же с такими огромными количествами энергии, которые могут дать зеркала, можно приводить в исполнение самые смелые фантазии. Именно же для полетов они могут иметь еще такое значение, что, направив в снаряд широкий сноп концентрированного света, мы будем сообщать ему большее количество энергии, чем он мог бы получить от Солнца. Так же мы можем и сигнализировать в Солнечной системе.
(Зеркала же можно употребить и как рефлекторы для волн станции беспроволочного телеграфа для направления их куда нужно)».

Схема зеркал и приемника тепла межпланетного корабля Кондратюка
Такая вот эволюция: от «зеркального» движителя и освещения столиц — к замораживанию и испепелению «участков» земной поверхности, населенных, как нетрудно догадаться, «нашими врагами». Кондратюк был, видимо, одним из первых, кто задумался о возможности создания орбитального оружия, но, к сожалению, не последним.
Однако Юрий Кондратюк смотрел еще дальше. Определив основные этапы программы освоения космического пространства, он указал, что для осуществления перелетов к Луне, к Марсу и другим планетам необходима промежуточная база, расположенная на орбите спутника Луны. Для снабжения базы Кондратюк предлагал использовать беспилотные транспортные ракеты или снаряды, запускаемые из двухкилометровой пушки. Чтобы свести вероятность «промаха» транспортного снаряда к минимуму, изобретатель советовал развернуть в пространстве рядом с базой «сигнальную площадь» из материала, «обладающего возможно большим отношением отражательной способности видимых лучей к весу его квадратного метра». Если общая площадь этого сооружения будет не менее «нескольких сотен тысяч квадратных метров», то его, по мнению Кондратюка, можно будет наблюдать с Земли, что позволит корректировать запуск транспортных ракет и снарядов.
Сама база должна была иметь форму тетраэдра из алюминиевых ферм, в вершинах которого расположены массивные элементы базы с жилыми помещениями и складами. На базе должна постоянно дежурить смена из трех человек У них имеется мощный телескоп-рефлектор для астрономических наблюдений, а также небольшая ракета на двух пилотов со своим астрономическим оборудованием, способная вылетать на перехват транспортных снарядов и даже совершать кратковременные посадки на Луну. Двусторонняя связь между базой и Землей осуществляется посредством световых сигналов, посылаемых мощными прожекторами, установленными на Земле, и с помощью легкого металлического зеркала, установленного на базе.
Самым примечательным в этом проекте является то, что именно Кондратюк первым предложил разделить «лунный корабль» на две части — на орбитальный (база) и посадочный (двухместная ракета) модули, показав при этом, что такая схема заметно снизит расходы на лунную экспедицию. Идея «разделения» имела поистине историческое значение.
Вот что однажды написал Джон Хуболт, один из создателей космической системы «Аполлон» («Apollo»):
«Когда ранним мартовским утром 1968 года с взволнованно бьющимся сердцем я следил на мысе Кеннеди за стартом ракеты, уносившей корабль «Аполлон-9» по направлению к Луне, я думал в этот момент о русском — Юрии Кондратюке, разработавшем эту самую трассу, по которой предстояло лететь трем нашим астронавтам».
Именно Джон Хуболт был инициатором использования в американском проекте лунной экспедиции двухмодульной схемы Кондратюка, и в упорной борьбе с ведущими специалистами, в том числе с Вернером фон Брауном, ему удалось настоять на своем.
Подробности этой битвы идей стали известны позднее, когда в марте 1969 года «Лайф» опубликовал статью Дэвида Шеридана «Как идея, которую никто не хотел признавать, превратилась в лунный модуль». В частности, в статье Шеридана говорилось: «Идея, которая вызвала к жизни лунный модуль, еще более дерзка, чем сам аппарат». В 1961 году схема Кондратюка показалась американским специалистам настолько нелепой, что предложивший ее Джон Хуболт был даже осмеян.
Однако потом было признано: настойчивость Хуболта, его «одинокая и бесстрашная битва» за схему Кондратюка сберегла Соединенным Штатам миллиарды долларов и пару лет бесценного времени.
Судьба же талантливого изобретателя, который, не будь Циолковского или Цандера, вполне мог стать «отцом» современной космонавтики, сложилась трагически. В 1930 году он как сотрудник «Хлебстроя» был обвинен во вредительстве и получил три года; срок впоследствии был заменен ссылкой и работой в одном из проектных бюро ОГПу. В 1941 году Юрий Кондратюк ушел добровольцем на фронт и погиб в бою на территории Кировского района Калужской области. Недавно озвученная версия, якобы он попал в немецкий плен и работал в Пенемюнде, не подтвердилась.
Интерес правителей Советской России к проблеме межпланетных сообщений, чем бы он ни был вызван, весьма способствовал появлению и дальнейшему развитию сообществ энтузиастов космонавтики. В ноябре 1921 года Совет Народных Комиссаров установил пожизненную пенсию для Циолковского. В мае 1924 года образовано «Общество изучения межпланетных сообщений». В апреле 1927 года состоялось открытие первой в истории «Выставки моделей и механизмов межпланетных аппаратов» в Москве. Издаются и переиздаются труды тех, кого впоследствии назовут «пионерами ракетостроения». Проводятся конференции, читаются доклады.
Интерес коммунистических правителей к космонавтике не остался незамеченным в странах «враждебного капиталистического окружения», вызывая понятную озабоченность. А у страха, как известно, глаза велики, и порой доходило до курьезов.
Например, в 1927 году была опубликована статья некоего Б. Рустем-Бека «В два дня на Луну». Статья сообщала о фантастической телеграмме, якобы отправленной из России в Лондон: «Одиннадцать советских ученых в специальной ракете вылетают на Луну». Весьма примечательны комментарии к этому сообщению, напечатанные газетой «Дейли Кроникл»:
«На Луне некого пропагандировать, там нет населения, — писала газета. — Мы должны встретиться с другой опасностью. Если большевикам удастся достигнуть Луны, то, не встретив там никакого вооруженного сопротивления, <…> они без труда овладеют всеми лунными богатствами. Заселенная коммунистическими элементами, Луна сделается большевистской. Затраты на постройку ракеты и риск жизнями нескольких ученых — сущие пустяки в сравнении с теми колоссальными выгодами, которые можно ждать от эксплуатации материи на Луне».
И в самой России кипели страсти вокруг темы космических путешествий. Новгородская газета «Звезда» сообщала своим читателям:
«На Московском аэродроме заканчивается постройка снаряда для межпланетного путешествия. Снаряд имеет сигарообразную форму, длиной 107 метров. Оболочка сделана из огнеупорного легковесного сплава. Внутри — каюта с резервуарами сжатого воздуха. Тут же помещается особый чиститель испорченного воздуха. Хвост снаряда начинен взрывчатой смесью. Полет будет совершен по принципу ракеты: сила действия равна силе противодействия. Попав в среду притяжения Луны, ракета будет приближаться к ней с ужасной скоростью, и для того, чтобы уменьшить ее, путешественники будут делать небольшие взрывы в передней части ракеты».
На адрес Циолковского и в «Общество изучения межпланетных путешествий» приходят горы писем с просьбой записать в отряд межпланетчиков.
Раньше или позже энтузиазм населения и самих «ракетчиков» должен был принести плоды в виде формирования специальных научных групп, занимающихся исключительно исследованием вопросов космонавтики и разработкой космических аппаратов. И такие группы были созданы. Первая из них объединилась вокруг Газодинамической лаборатории, вошедшей в историю под аббревиатурой ГДЛ.
Прямой предшественницей ГДЛ являлась Лаборатория для реализации изобретений инженера-химика Николая Ивановича Тихомирова, созданная в марте 1921 года и размещавшаяся в Москве в доме № 3 по Тихвинской улице. В состав этой организации входили химическая и пиротехническая лаборатория и слесарно-механическая мастерская.
Николай Тихомиров занимался ракетным делом с 1894 года. Произведя серию опытов с пороховыми и жидкостными ракетами, он счел нужным предложить Морскому министерству проект боевой ракеты, в качестве энергоносителя которой можно было использовать не только твердое топливо — порох, но и жидкое — смеси спиртов и нефтепродуктов. Экспертиза предложения длилась с 1912 по 1917 год, когда, по понятным причинам, это дело было прекращено. Только в мае 1919 года управляющий делами Совнаркома Владимир Бонч-Бруевич получил от Тихомирова предложение реализовать его изобретение — «самодвижущуюся мину для воды и воздуха», которая, по сути дела, являлась пороховой ракетой. Тихомиров просил Бонч-Бруевича довести свое ходатайство до председателя Совнаркома Владимира Ленина. Изобретение было подвергнуто ряду новых экспертиз и только в начале 1921 года признано имеющим важное государственное значение.
К тому времени Тихомиров пришел к выводу, что применявшийся в ракетах черный дымный порох не может обеспечить ни значительной дальности, ни стабильности полета ракет. Поэтому он сосредоточил все усилия на создании принципиально нового пороха, свободного от недостатков черного. В результате упорных изысканий появился мощный, стабильно горящий бездымный пироксилиновый порох на нелетучем растворителе — тротиле. Шашки из пироксилино-тротилового пороха горели без дыма, с огромным газообразованием и вполне стабильно.
В 1925 году ГДЛ перебазировалась в Ленинград. Ее сотрудники занимались в основном разработкой ракетных двигателей: сначала — на бездымном порохе (шашки для боевых активно-реактивных снарядов, твердотопливные ускорители для самолетов), затем — на жидком.
В 1929 году в ГДЛ был организован отдел под руководством Валентина Петровича Глушко. В этом отделе был спроектирован и создан первый в истории электрический ракетный двигатель (ЭРД). Принцип действия такого двигателя был довольно прост: в камеру сгорания двигателя, снабженную соплом, подается электропроводящее вещество, через которое производится мощнейший электрический разряд; при этом проводник мгновенно переходит в газообразное состояние, и продукты сгорания вытекают через сопло, создавая реактивную тягу. Отдел Глушко провел ряд экспериментов с этим двигателем, используя в качестве электропроводящего рабочего вещества литий, бор, алюминий, магний, кремний и бериллий.
Первоначально эти опыты велись в лаборатории «Миллион вольт» академика Чернышева в Лесном, а позднее, с начала 1933 года, — на собственной экспериментальной установке, смонтированной в одном из казематов Петропавловской крепости на Неве. Установка позволяла получать энергетические дозы в виде электрических импульсов с крутым фронтом (порядка нескольких микросекунд) и амплитудой до 100000 В. Существо происходящего при этом процесса Глушко описал в своей дипломной работе следующим образом: «В рассматриваемом случае взрыв происходит вследствие быстрого перехода вещества из твердого состояния в газообразное, то есть вследствие чисто физических причин, без изменения химической структуры участвующего во взрыве вещества».
На базе идеи электрического ракетного двигателя Валентин Глушко предложил проект космического корабля «Гелиоракетоплан». Этот корабль должен был представлять собой полую сферу с кольцевым поясом ЭРД, снабжение которых электроэнергией осуществлялось посредством плоской батареи из «солнечных» термоэлементов.
Помимо столь экзотических проектов, отдел Глушко занимался разработкой жидкостных реактивных двигателей и создал целую серию их — от «ОРМ-1» по «ОРМ-52» (сокращение от «Опытный Ракетный Мотор»).
Мы не будем перебирать здесь все эти двигатели, отметим только некоторые из них, имевшие особое значение для истории космонавтики.
«ОРМ-1» стал первым советским экспериментальным ЖРД. Топливо — четырехокись азота (окислитель) и толуол (горючее); при испытании на жидком кислороде и бензине двигатель развивал тягу до 20 килограммов. Камера двигателя была плакирована изнутри медью и охлаждалась водой, заливавшейся в наружный кожух. Весь двигатель состоял из 93 деталей.

Схема двигателя «ОРМ-1» (продольный и поперечный разрезы)
«ОРМ-1» показал себя довольно капризным двигателем, работал нестабильно, часто взрывался. В конце концов работы по двигателям с монотопливом были в ГДЛ прекращены.
В 1931–1932 годах на двигателе «ОРМ-16» группа Глушко провела более 100 огневых стендовых испытаний. В качестве окислителя использовались жидкий кислород, азотная кислота и растворы четырехокиси азота, а в качестве горючего — керосин.
Двигатель «ОРМ-48» на двухкомпонентном топливе (окислитель — азотная кислота, горючее — керосин) был разработан и испытан в 1933 году. «ОРМ-48» отличался от предыдущих моделей двигателей конструкцией сопла, которое состояло из внутренней стальной стенки с несколькими поясами спиральных ребер и внешней медной рубашки; стенка и рубашка соединялись в одно целое при помощи пайки по вершинам ребер. В полученные таким путем каналы подавалась вода с целью охлаждения конструкции. «ОРМ-48» явился прототипом современных камер сгорания со связанными оболочками.
«ОРМ-52» был наиболее мощным ЖРД, разработанным в ГДЛ и прошедшим официальные испытания в 1933 году. Он развивал тягу 250–300 килограммов и скорость истечения — 2060 м/с Топливо — азотная кислота и керосин. Масса — 14,5 килограмма.
Разумеется, двигатели создавались группой Глушко не только для экспериментальной отработки элементов конструкции и подбора оптимальных топливных смесей — всегда подразумевались какие-то проекты ракет, на которые эти двигатели будут установлены.
Одним из первых проектов, предложенных группой Глушко, стала ракета «РЛА-100» («Реактивный летательный аппарат с высотой подъема 100 километров»). Согласно проекту, стартовый вес этой ракеты должен был составлять 400 килограммов, вес азотнокислотного топлива — 250 килограммов, вес двигателя — 20 килограммов, вес полезного груза — 20 килограммов, тяга двигателя — 3000 килограммов, время работы — 20 секунд.
Ракета состояла из двух корпусов с общей головкой. Для стабилизации полета «РЛА-100» предусматривалась установка двигателя выше центра тяжести ракеты на карданном подвесе при стабилизации двигателя непосредственно гироскопом. В головной части ракеты предусматривалось размещение метеорологических приборов с парашютом и автоматом для выбрасывания их в атмосферу, а в нижней части корпуса — аккумуляторов давления со сжатым воздухом для подачи компонентов топлива в двигатель; верхние баки предназначались для окислителя, средние — для горючего. Материал баков и аккумуляторов давления — высокопрочная сталь. Нижние части корпусов несли дюралюминиевое оперение. Для определения траектории полета было предусмотрено использование разработанного для этой цели киносъемочного аппарата с секундомером, установленного в одном из хвостовых обтекателей.

Ракета «РЛА-100» (проект ГДЛ)
В 1932 году за изготовление трех ракет «РЛА-100» взялся Мотовилихинский машиностроительный завод в городе Перми. Об огневых испытаниях одной из этих ракет рассказывает бывший сотрудник лаборатории Владислав Соколов в своей книге «Огнепоклонники»:
«С этим аппаратом связано забавное приключение. На полевые пусковые испытания прибыло из Москвы одно весьма высокопоставленное лицо. И надо же было такому случиться, что при пуске аппарата произошло искривление его стабилизатора, превратившее ракету в бумеранг. Ракета, описав дугу, помчалась в сторону пусковой позиции. Все бросились к укрытию. Первым добежало до него высокопоставленное лицо, чем убедило нас в пользе физической подготовки…»
Для ускорения летных испытаний двигателей с тягой до 300 килограммов и проверки способов старта и управления ракет в 1933 году в ГДЛ были разработаны конструкции экспериментальных ракет «РЛА-1», «РЛА-2», «РЛА-3», способные осуществить вертикальный взлет на высоту порядка 2–4 километров.
В этих ракетах предусматривалось жесткое крепление двигателей в хвостовой части ракеты; подача топлива — с помощью сжатого газа из аккумулятора давления; бак горючего размещался концентрично внутри бака окислителя.
«РЛА-1» по конструкции была наиболее простой: ее головка и хвостовое оперение — деревянные, длина — 1,88 метра, диаметр корпуса — 195 миллиметров, подача топлива в двигатель — сжатым воздухом без редуктора давления.
«РЛА-2» отличалась от первой модели использованием дюралюминиевой головки, несущей контейнер метеоприборов с парашютом, раскрытие которого предусматривалось вышибным автоматом; введением в средней части корпуса ракеты арматурного отсека с редуктором давления воздуха; применением дюралюминиевого хвостового оперения.

Ракета «РЛА-2» (проект ГДЛ)
В 1933 году на стенде была отработана укладка парашюта в головку «РЛА-2», а также испытаны автомат для выбрасывания парашюта и арматурный отсек с редуктором давления. В связи с этим «РЛА-1» был перебран по схеме «РЛА-2» путем введения арматурного отсека и в таком виде прошел стендовые испытания в конце 1933 года
«РЛА-3» отличалась от «РЛА-2» наличием приборного отсека с двумя гироскопами с воздушным дутьем, управлявшими с помощью пневматических сервоприводов и механических тяг двумя парами воздушных рулей, размещенных в хвостовом оперении. Однако изготовление опытного образца «РЛА-3» так и не было завершено.
На все три ракеты конструкторы планировали установить двигатель «ОРМ-52».
Ракетоплан «РП-1» («Имени XIV годовщины Октября»)
Параллельно с Газодинамической лабораторией над проблемой создания ракет и двигателей для них трудились в общественных группах изучения реактивного движения, известных под названиями МосГИРД и ЛенГИРД. Они были организованы осенью 1931 года по инициативе неутомимого Фридриха Цандера. В то время он, осуществляя свою «космическую» программу, всерьез работал над проектом ракетоплана «РП-1». В качестве основы Цандер собирался использовать бесхвостый планер «БИЧ-11», на который планировалось установить новый двигатель «ОР-2».
Поскольку речь шла о первом по-настоящему серьезном проекте, самодеятельность энтузиастов-одиночек тут была неуместна, и для работ над ракетопланом при Бюро воздушной техники Центрального совета Осоавиахима была сформирована Группа изучения реактивного движения (сокращенно — ГИРД). Руководителем ее стал сам Фридрих Цандер. А Технический совет возглавил молодой талантливый инженер и планерист с большим стажем Сергей Павлович Королев.
В числе первых в ГИРД вошли конструктор планера «БИЧ-11» Борис Черановский, известный аэродинамик Владимир Ветчинкин и авиационный инженер Михаил Тихо-нравов.
Планер «БИЧ-11» («Треугольник») с трапециевидным в плане крылом, созданный выдающимся советским авиаконструктором Борисом Черановским, был выбран в качестве основы для строительства первого ракетоплана неслучайно. Его обкатывал сам Сергей Королев, и именно он, согласно сохранившимся свидетельствам, уговорил Фридриха Цандера остановить выбор на этой машине. К тому же планер не имел хвоста, и «гирдовцы» сочли, что это упростит задачу размещения ракетного двигателя.
Несколько позже был заключен и соответствующий договор, регламентирующий деятельность группы ГИРД при конструировании ракетоплана. Он назывался «Социалистический договор по укреплению обороны СССР № 228/10 от 18 ноября 1931 года», и на нем стоял гриф «Не подлежит оглашению».
По этому договору, например, Цандер брал на себя проектирование и разработку чертежей и производство по опытному реактивному двигателю «ОР-2» к реактивному самолету «РП-1». В свою очередь, Осоавиахим принимал на себя финансовые расходы и хозяйственные заботы, связанные с договором. Первая тысяча рублей была переведена ГИРДу вскоре после заключения договора. Центральный совет Осоавиахима наметил ассигновать в феврале и марте 1932 года на испытания ракетного самолета 93 тысячи рублей. Ответственность за выполнение всех работ, связанных с ракетопланом, возлагалась на Технический совет ГИРДа и лично на Сергея Королева.
В составе МосГИРДа работало две бригады, занимавшиеся непосредственно ракетопланом «РП-1»: первая и четвертая. Первая бригада состояла из специалистов Центрального института авиационного моторостроения (ЦИАМ), которых привел в ГИРД Цандер, и занималась двигателем «ОР-2». Четвертая бригада, руководимая Королевым, готовила «БИЧ-11» к переделке в ракетоплан.
Согласно проекту, «РП-1» («гирдовцы» придумали ему еще одно название: «Имени XV годовщины Октября») должен был иметь следующие характеристики: стартовый вес — 470 килограммов, длина — 3,2 метра, высота — 1,3 метра, размах крыла — 12,5 метра, максимальная скорость — 140 км/ч, посадочная скорость — 54 км/ч, продолжительность полета — 7 минут.

Схема ракетного планера «РП-1» («БИЧ-11» с двигателем «ОР-2»)
Сергей Королев сам выполнял все полетные испытания планера. О каждом из них он докладывал в Осоавиахим.
«Мною, — писал он в одной из докладных, — были произведены два тренировочных полета на самолете РП-1 без мотора… Несмотря на сильный боковой ветер, во время каждого полета мною были использованы два глубоких разворота более чем на 90 градусов. Причем самолет оказался вполне устойчивым и легко управляемым при всех режимах…»
Однажды при испытании второго экземпляра «РП-1» резко пошел на снижение, при жесткой посадке Королева выбросило из машины, и он чудом остался жив.
В принципе, «БИЧ-11» был готов к переделке: баки, трубопроводы, краны и другое оборудование уже было смонтировано. Однако работы над двигателем «ОР-2» затягивались. В конечном виде он должен был выглядеть следующим образом: в качестве топлива выбрали бензин с жидким кислородом, проектная тяга — 50 килограммов, охлаждение сопла осуществляется водой, камера сгорания — газообразным кислородом, подача компонентов топлива — вытесни-тельная, давлением азота.
У ГИРДа имелся высокий покровитель. Им был заместитель председателя Реввоенсовета СССР и начальник вооружений РККА Михаил Николаевич Тухачевский — один из тех крупных советских военачальников, кто мнил себя реформатором армии, а следовательно, интересовался любыми перспективными инженерными разработками, которые могли бы иметь применение в военном деле. Именно Тухачевский выделил ГИРДу полигон в Нахабино, где проводились все огневые испытания, включая и тесты по отработке элементов двигателя «ОР-2».
Первые испытания полностью собранного двигателя состоялись 18 марта 1933 года, но в ходе их двигатель взорвался, а испытательный стенд был разрушен.

Жидкостный ракетный двигатель «ОР-2» на испытательном стенде
Впоследствии первая бригада ГИРДа усовершенствовала двигатель, заменив бензин этиловым спиртом для снижения температуры газов и облегчения охлаждения (эта модификация получила обозначение «02»). В течение 1933 года было проведено еще три испытания двигателя, но он продолжал вести себя капризно: не удавалось добиться устойчивого горения. Максимальная продолжительность работы составила 35 секунд, полученная тяга — примерно 40 килограммов.
Несмотря на проблемы с двигателем, надежда на то, что ракетоплан «РП-1» будет достроен, все еще оставалась. Секретарь ГИРДа писал Константину Циолковскому:
«Наши опытные работы по ракетоплану ГИРД-РШ подходят к концу. <…> У нас работает много высококвалифицированных инженеров, но лучшим из лучших является председатель нашего техсовета инженер С. П. Королев. <…> Он-то и будет пилотировать первый ракетоплан».
Тем временем у деревянного планера приближался к концу паспортный срок эксплуатации. Чтобы четвертая бригада не простаивала, инициативный Королев переориентировал ее на исследования по теме обеспечения жизни человека при полете в стратосфере и выше. В этих исследованиях бригада действовала в содружестве с лабораторией летного труда Военно-воздушной академии имени Жуковского. Были рассмотрены особенности полета в скафандрах, в герметических кабинах с регенерацией воздуха и так далее.
В архиве сохранился отчет об одном из исследований, выполненных в Академии имени Жуковского и посвященных обеспечению дыхательной функции экипажа на «стратосамолете». В отчете говорится: «В целях разрешения поставленного ГИРДом перед лабораторией вопроса раньше всего были изучены явления, создающиеся в герметической кабине. Для этого были проведены опыты в сварной железной герметической кабине объемом 1,37 куб. метра с пребыванием в ней двух человек в течение различного времени».
В конце концов Королев и остальные «гирдовцы» были вынуждены отказаться от идеи создания «РП-1». Изменилась конъюнктура, изменились и дальнейшие планы. Ракетоплан «РП-1» («Имени XIV годовщины Октября») так и остался проектом, а Сергей Королев так и не стал первым советским пилотом, поднявшим в воздух самолет с реактивным двигателем.
Позднее на планер «БИЧ-11» установили двигатель внутреннего сгорания «Скорпион» мощностью в 27 лошадиных сил, превратив его тем самым в авиетку. В таком виде «БИЧ-11» совершил несколько удачных полетов, став одним из первых самолетов типа «летающее крыло».
Среди «гирдовцев» гораздо больших успехов добилась вторая бригада, возглавляемая Михаилом Клавдиевичем Тихонравовым.
В бригаде работали способные инженеры с отличной физико-математической подготовкой. Они вели следующие темы: двигатель «РД-А» («РДА-1») с насосной подачей компонентов для ракетоплана «РП-2» (модификация ракетоплана «РП-1» с двигателем Тихонравова и двумя кислородными баками), ракета «ГИРД-05» под азотно-кислотный двигатель «ОРМ-50» конструкции Валентина Глушко, ракета «ГИРД-07» с двигателем на жидком кислороде и керосине, ракета «ГИРД-09» с использованием топлива смешанного агрегатного состояния.
Первоначально основное внимание в бригаде уделялось разработке топливного насоса, спроектированного Тихонравовым. В 1932 году были изготовлены рабочие чертежи насоса. Но изготовление его, переданное одному из предприятий, затянулось.
Во второй половине 1932 года центр тяжести работ бригады сместился на создание ракет, причем разработка их проектов в основном велась комплексно, включая корпус ракеты, двигатель, систему подачи, наземное оборудование, систему спасения.
Ракета «ГИРД-07» была первой ракетой, над которой начала работать вторая бригада ГИРДа. Ее двигатель должен был работать на жидком кислороде и керосине. Топливные баки помещались в стабилизаторах ракеты, а ЖРД — между ними. Подача топлива осуществлялась давлением паров кислорода. Однако отработка двигателя ракеты «07» не была закончена в ГИРДе, и впоследствии она летала с двигателем, проходившим под обозначением «10».
Наиболее успешно и быстро второй бригадой были осуществлены работы по ракете «ГИРД-09». Она была спроектирована под топливо, состоящее из жидкого кислорода и сгущенного бензина. Двигатель ракеты «09» представлял собой камеру из листовой латуни с бронзовой головкой и бронзовым гнездом для сопла. Сопло было изготовлено из стали. В головку ввертывался пусковой кран, соединенный непосредственно с кислородным баком, изготовленным из дюралевой трубы. Подача жидкого кислорода осуществлялась давлением его же паров. Для наблюдения над нарастанием давления на ракете был установлен манометр. Сгущенный бензин помещался непосредственно в камере сгорания между особой цилиндрической металлической сеткой и стенками камеры. Корпус ракеты, внутри которого были размещены двигатель и бак, был сделан из дюраля толщиной 0,5 миллиметра. Стабилизаторы были из электрона. Полностью снаряженная ракета весила 19 килограммов, в том числе 6,3 килограмма приходилось на топливо.
Первые испытания ракеты «ГИРД-09» состоялись на Нахабинском полигоне 8 июля 1933 года. На нем присутствовали многие специалисты ГИРДа, в том числе и Сергей Королев. Состоялось два запуска двигателя. При первом запуске двигатель «09» развил тягу в 28 килограммов, при втором — 38 килограммов.
Объяснялось это тем, что давление в камере сгорания во втором случае было на 3 атмосферы выше. Посовещавшись, «гирдовцы» решили впредь работать при еще более высоком давлении.
Через месяц, 7 августа 1933 года, на Нахабинском полигоне испытывался двигатель с давлением в камере 13 атмосфер. Тягу удалось поднять до 53 килограммов.
Для будущей ракеты пробовали разные варианты зажигания смеси в камере сгорания. Пытались использовать и медленногорящий состав на основе пороха. Этот состав в камере должен был воспламенять топливную смесь. Подобрали нужный порох, поместили в металлический сосуд. Начали испытывать, как он будет гореть. Но он сразу же взорвался.
Тогда Тихонравов и Королев, используя свой авиационный опыт, решили применить зажигание от свечи, как это делается в авиадвигателях. И свеча не подвела, хотя иногда случались неприятности. Особенно огорчали неудачи в последние дни перед пуском ракеты, из-за чего ее старт приходилось трижды откладывать — 9, 11, 13 августа. Наконец наступило 17 августа 1933 года — канун Дня Воздушного Флота, который «гирдовцы», среди которых было много авиаторов, считали своим праздником.
Вот как рассказывает об этом историческом событии Николай Иванович Ефремов, сотрудник и секретарь партийной организации ГИРДа:
«Семнадцатое августа. На испытания поехали немногие, что способствовало деловой обстановке. Ракету готовили не спеша, проверялся каждый агрегат по нескольку раз, и только к вечеру закончили подготовку. Ракета заправлена бензином, вернее, остатками бензина, ее опустили в пусковой станок. Проведена заливка жидкого кислорода, одет носовой обтекатель. Начинает нарастать давление в кислородном баке от паров кислорода Теперь надо ждать и следить по манометру, установленному на ракете, до пускового давления в 18 атм. Стрелка манометра остановилась на цифре 13,5 и не хочет больше двигаться. По струйке паров видно, что пропускает предохранительный клапан и давление больше не поднять. Устанавливается своеобразное равновесие. Что делать?
Решаем произвести запуск, правда, ракета не достигнет расчетной высоты, но это при первом пуске не имеет принципиального значения. Главное — полет, в котором будет проверена работа всех агрегатов. «Добро, пускаем!» — решает Сергей Павлович. Достаю коробку спичек и передаю ему. Он поджигает бикфордов шнур. Идем в блиндаж. Становлюсь у пульта управления, рядом вплотную становится Сергей Павлович. Смотровое окно узкое, и мы стоим очень плотно, чтобы видеть ракету и пусковой станок.
Команда «контакт», и сразу же толкаю от себя рукоятку пускового крана. Взрыв — звучит приятный «голос» нашего двигателя, и первая советская ракета медленно начала подъем. Затем будто зависла на верхнем срезе пускового станка. Впечатление такое, что она зацепилась за концы направляющих труб и только после этого ринулась ввысь. Летит!!! Мы бросились к выходу, чтобы следить за дальнейшим ее полетом.
Нас охватило чувство, которое трудно даже описать. Тут и нервное напряжение, накопившееся за все предпусковое время, и восторг, и радость, и еще что-то… Словом, эмоций больше, чем нужно. Сергей Павлович был ближе к выходу и первым оказался в проеме выходной двери, да так и застрял там, загородив собой выход, глядя на летящую вверху ракету. Тут уж не до вежливости и этикета. Резким толчком плеча я вытолкнул его наружу, а сам застыл на том же месте, жадно следя за полетом, стараясь не упустить ни одного колебания ракеты, которая начала раскачиваться.
Состояние полной отрешенности от всего окружающего, все внимание только туда — в вышину. Евгений Маркович Матысик и Лев Алексеевич Иконников, наши слесари-сборщики, забрались на дерево, чтобы лучше следить за полетом. Когда ракета взлетела, они стали восторженно кричать и подпрыгивать на своих ветках. В результате Матысик потерял равновесие и свалился вниз.
Ракета поднялась примерно на 400 м и повернула к земле. Причиной изменения полета послужило повреждение во фланцевом соединении камеры сгорания с сопловой частью, за счет чего возникла боковая сила, которая и завалила ракету. До земли ракета летела с работающим двигателем и разрушилась от ударов о деревья.
Ракету увидели издали, она разломилась на несколько частей. Из сопла все еще струился дымок».
Полету «девятки» был посвящен специальный выпуск стенгазеты ГИРДа «Ракета № 9». Во всю ширину газеты приведена слегка измененная фраза из заметки Сергея Королева: «Советские ракеты победят пространство!» А ниже сама заметка:
«Первая советская ракета на жидком топливе пущена. День 17 августа, несомненно, является знаменательным днем в жизни ГИРДа, и начиная с этого момента советские ракеты должны летать над Союзом Республик.
Коллектив ГИРДа должен приложить все усилия для того, чтобы еще в этом году были достигнуты расчетные данные ракеты и она была сдана на эксплуатацию в Рабоче-Крестьянскую Красную Армию.
В частности, особое внимание надо обратить на качество работы на полигоне, где, как правило, всегда получается большое количество неувязок, недоделок и прочее.
Необходимо также возможно скорее освоить и выпустить в воздух другие типы ракет, для того чтобы всесторонне научить и в достаточной степени овладеть техникой реактивного дела.
Советские ракеты должны победить пространство!»
Обратите внимание, Королев прямо пишет о том, что ракета должна встать на вооружение РККА. Это очень симптоматично для нового поколения ракетчиков: они уже думали не столько о полетах на Луну или на Марс, сколько о более близкой перспективе — создании боевых ракет дальнего действия. Они были детьми своего времени, а это было время войны…
Однако вернемся к основной теме нашего разговора. Успех первого запуска следовало закрепить, и поздней осенью 1933 года была запущена вторая ракета «ГИРД-09». На это раз испытания не оправдали ожиданий, после подъема ракеты на высоту около 100 метров по невыясненной причине произошел взрыв двигателя.
Впоследствии было изготовлено и запущено еще шесть экземпляров ракеты «ГИРД-09», имевших, правда, индекс «13». В ходе их пусков выявлялось влияние угла, под которым ракета пускалась, на характер полета. Большинство из этих ракет достигло высоты полета в 1,5 километра.
Проектирование ракеты «ГИРД-05» началось после запуска «девятки». Она рассчитывалась под двигатель «ОРМ-50» конструкции Валентина Глушко, работавший на азотной кислоте и керосине. Ракета была построена в конце 1933 года в период создания новой организации на базе ГИРДа и ГДЛ.
В 1934 году ракета с установленным двигателем прошла пять стендовых испытаний для отладки системы подачи топлива. При попытке пуска ракеты на полигоне, в связи с пониженным давлением подачи топлива из баков, двигатель развил неполную тягу и выработал все топливо, находясь в пусковом станке.
Позднее ракета «ГИРД-05» была использована как прототип при проектировании стратосферной ракеты «Авиа-ВНИТО». Для нее был использован керамический двигатель «12к», конструкции инженера Душкина, с тягой в 300 килограммов, работавший на жидком кислороде и 96 %-ном спирте, продолжительностью работы 60 секунд.
Среди других изменений, внесенных в конструкцию ракеты «ГИРД-05» при проектировании «АвиаВНИТО», можно назвать установку профилированных пустотелых стабилизаторов, которые взяли от неоконченной высотной ракеты «РДД-11». Ракета «АвиаВНИТО» имела длину 3,225 метра, диаметр — 0,3 метра, начальный вес — 97 килограммов, из которых 32,6 килограмма приходилось на топливо, а 10 килограммов — на полезный груз. В головной части ракеты уложили парашют, который должен был открываться по сигналу гироприбора при определенном угле отклонения ее продольной оси от вертикали. В приборном же отсеке установили аппарат для замера высоты полета, созданный на основе барографа.
Первый пуск «АвиаВНИТО» был осуществлен 6 апреля 1936 года из пускового станка ракеты «07» с короткими направляющими. Ракета вышла из него, не набрав большой скорости, и полетела, поворачиваясь против ветра. В результате парашют раскрылся еще до окончания работы двигателя и не дал ей подняться достаточно высоко.
Для последующих пусков, чтобы обеспечить строго вертикальный старт, соорудили деревянную мачту высотой в 48 метров с направляющей планкой, которую охватывали держатели — «лапки» ракеты. Планкой служил рельс от узкоколейки. 15 августа 1937 году был произведен успешный пуск этой ракеты на высоту около 3 километров с использованием мачты в качестве пускового станка.
Успешный запуск «девятки» побудил первую бригаду ГИРДа ускорить работы над ракетой «ГИРД-Х», которую проектировал еще Фридрих Цандер для апробации в условиях настоящего полета отдельных узлов и приборов будущих ракетопланов.
Согласно проекту, ракета «ГИРД-Х» должна была иметь длину 2,2 метра, стартовый вес — 29,5 килограмма, из которых 8,3 килограмма — вес топлива. На ракете был установлен двигатель «10» с вытеснительной подачей топлива (жидкий кислород и этиловый спирт) и тягой в 70 килограммов.
Первый пуск ракеты «ГИРД-Х» состоялся 25 ноября 1933 года (то есть уже через три месяца после старта «девятки»). Ракета взлетела вертикально, достигнув высоты в 80 метров.
Осенью 1933 года Газодинамическая лаборатория и МосГИРД объединились и на их базе начал работать Реактивный научно-исследовательский институт (РНИИ). Идея объединения созрела давно, когда представители этих двух коллективов познакомились с результатами работ друг друга. Идея понравилась и «высокому покровителю» Тухачевскому, который энергично принялся претворять ее в жизнь.
В результате 31 октября 1933 года по представлению Тухачевского Совет Труда и Обороны утвердил постановление об организации РНИИ. Сергей Королев был назначен на должность заместителя начальника института. При этом он получил звание дивизионного инженера и стал носить два ромба на петлицах.
В 1934 году Королев опубликовал свою первую серьезную работу — книгу «Ракетный полет в стратосфере». Книга эта, написанная простым доступным языком, популяризировала идеи ракетной техники; в ней подводился некий промежуточный итог работе, проделанной как в ГИРДе, так и в других научных группах.
В этой книге Королев приходит к неожиданным выводам:
«Достаточно посмотреть на <…> примеры ракетного планера и высотного самолета и сравнить их с составной ракетой Оберта и др. В первом случае — неуклюжий тяжелый взлет перегруженного аппарата, полет в течение коротких минут на практически ничтожной высоте и затем посадка туда, куда придется, так как мотор остановлен из-за израсходования всего горючего. В другом случае — мгновенный легкий взлет, скорости во много сотен метров в секунду и громаднейшие высоты.
Отсюда можно сделать два вывода
Первый — это необходимость и целесообразность применения ракет, сразу развивающих достаточные скорости и испытывающих поэтому весьма значительные ускорения. Это — задача сегодняшнего дня.
Второй — полет человека в таких аппаратах в настоящее время еще невозможен. Повторяем еще раз, что в данном случае имеется в виду не подъем, а полет по некоторому заданному маршруту с работающим мотором.
Понятно, что ракета, благодаря своим исключительным качествам, т. е. скорости и большому потолку (а значит и большой дальности полета), является очень серьезным оружием. И именно это надо особенно учесть всем интересующимся данной областью, а не беспочвенные пока фантазии о лунных перелетах и рекордах скорости несуществующих ракетных самолетов».
Именно этот фрагмент любят цитировать историки космонавтики, чтобы показать заинтересованному читателю момент разочарования Королева в идее ракетопланов в пользу ракет простой схемы. Однако дальнейшая деятельность конструктора отвергает этот тезис. Дело в том, что сразу после организации РНИИ Сергей Королев с соратниками начинает разработку серии крылатых ракет под индексом «06/1», «06/2» и так далее (в знаменателе указывался порядковый номер), которые, по сути, являлись моделями будущих ракетопланов.
Эти ракеты, как выяснилось, нужны были не только для экспериментов, они привлекли внимание военных, увидевших в них средство для поражения различных целей на земле и летящих объектов в воздухе.

Модели крылатых ракет РНИИ
Что же такое крылатая ракета в представлении Сергея Королева? Для того чтобы ответить на это вопрос, обратимся к его статье «Крылатые ракеты и применение их для полета человека» (1935 год):
«Крылатая ракета — летательный аппарат, приводимый в движение двигателем прямой реакции и имеющий поверхности, развивающие при полете в воздухе подъемную силу.
Будем считать, что взлет, набор высоты, дальнейший полет и затем планирование и посадка такого аппарата принципиально тождественны аналогичным эволюциям самолета.
Полет может преследовать достижение наибольшей высоты подъема с последующим планированием и посадкой или дальности, т. е. покрытие наибольшего расстояния по прямой или по заданному маршруту».
Итак, Королев вовсе не отказывается от планов строительства ракетного самолета — наоборот, в самом определении крылатых ракет он указывает на определенное сходство схем.
Уже в 5 мая 1934 года «гирдовцами» была испытана первая крылатая ракета серии «06/1», разработанная инженером Евгением Щетинковым и представлявшая собой модель бесхвостого планера с двигателем от ракеты «09». В ходе испытаний ракета пролетела около 200 метров.
Следующая ракета «06/2» являлась прототипом будущей большой ракеты «06/3» (другое обозначение — «216»). «Сердцем» ее был такой же двигатель, как и у первой жидкостной ракеты «09». Эта ракета предназначалась для пуска с земли по удаленным целям (крупным объектам и площадям). Она имела длину 2,3 метра, а размах крыла — 3 метра. Полетный вес ее доходил до 100 килограммов. Расчетная дальность составляла 15 километров. На вид это был миниатюрный самолет со свободнонесущим крылом толстого профиля и двухкилевым оперением. Баки для окислителя делались в виде труб, они одновременно служили и силовыми элементами крыла. Баки для горючего размещались в фюзеляже. Окислитель и горючее подавались в двигатель под давлением сжатого воздуха из баллона Двигатель располагался в хвосте, а автоматика и боевой груз — в носовой части.
Вот что вспоминает о полете крылатой ракеты «06/2» Михаил Тихонравов. Кроме него на старте тогда находились Королев, Щетинков и механики. После взлета ракета устремилась вверх и пошла на петлю. Замкнув петлю, она пролетела недалеко от стартовиков на высоте двух метров, пошла на вторую петлю и в конце ее врезалась в землю.
Когда вопросы динамики полета на модели «06/2» были отработаны, началась постройка ракеты «06/3», имевшей вид миниатюрного самолета с размахом крыла в 3 метра. На ней был установлен двигатель «02» (поздняя «спиртовая» модификация двигателя «ОР-2» конструкции Цандера).
Позже стали проектировать и строить четвертую крылатую ракету — «06/4» (другое обозначение — «212»). Это была ракета дальнего действия. Внешне она опять же напоминала небольшой самолет с трапециевидным крылом, хвостовым оперением и рулевым управлением. Длина фюзеляжа составляла 3,16 метра, размах крыла — 3,06 метра и диаметр фюзеляжа — 0,3 метра. Полетный вес достигал 210 килограммов, из них 30 отводилось на топливо и еще 30 — на боевой заряд. Расчетная дальность ракеты оценивалась в 50 километров. Внутри фюзеляжа размещались: в носовой части — боевой заряд, далее — аппаратура гироскопической стабилизации и автономного управления. В хвостовой части располагался жидкостный реактивный двигатель «ОРМ-65-1» конструкции Валентина Глушко. Он устанавливался на специальной раме и закрывался обтекателем-капотом с металлическим козырьком для защиты рулей ракеты от огня реактивной струи.

Управляемая крылатая ракета «212»
Ракету «212» построили в 1936 году. 29 апреля 1937 года состоялось первое огневое испытание. А всего таких испытаний в 1937–1938 годах было 13.
Другие две крылатые ракеты имели индексы «201» и «217». Ракета «201», по современным представлениям, может быть отнесена к классу «воздух — земля»; ракета «217» — к зенитным. На обоих вариантах устанавливался пороховой двигатель.
Ракета «201» (или «301») предназначалась для пусков с самолета по движущимся воздушным целям, а также и по земным объектам. Для нее создавалась особая аппаратура радиоуправления. Руководил этой работой профессор Шорин. Автоматы должны были командовать: «правый поворот», «левый поворот», «выше», «ниже», «взрыв».
На практике удалось проверить лишь одну команду, и то на другой ракете — «216». В нее вмонтировали приемник и, когда она находилась в полете, передали команду «взрыв». Была взорвана дымовая шашка, и Королев с товарищами наблюдал, как в небе по радиосигналу образовалось дымное облачко.
Интересно также то, что на многих ракетах вместо взрывчатого вещества в носовую часть закладывали небольшой парашют. В определенный момент парашют выстреливался, и ракета плавно спускалась на землю. Позже этот принцип был распространен Королевым на более мощные научные ракеты.
Разработка крылатой ракеты «217» производилась по заказу и тактико-техническим требованиям Центральной лаборатории проводной связи (впоследствии — Ленинградский филиал Государственного института телемеханики и связи). Работы были согласованы с ВВС и Управлением связи Красной Армии.
Ракеты «217» предназначались для поражения с земли движущихся воздушных целей, причем стабилизация и управление в полете, а также приведение в действие взрывателей должно было осуществляться телемеханическими приборами, при полете ракет по световому лучу прожектора, освещающего цель.
Для разрешения поставленной задачи ракета «217» была выполнена в двух вариантах.
Первый вариант «217/1» представлял собой ракету по нормальной самолетной схеме. Корпус ракеты имел цилиндрическую форму с обтекаемой носовой частью и слегка коническим отсеком на хвосте. Крыло свободнонесущего типа имело нижнее расположение. Хвостовое оперение состояло из стабилизатора, рулей высоты, киля и руля направления. В центральной части корпуса была расположена камера порохового ракетного двигателя.
Носовой отсек предназначался для телемеханических приборов, а в головной части — для взрывчатого вещества. Запуск ракеты предусматривался со специального пускового станка, позволяющего делать грубую наводку на цель.
Вес конструкции ракеты без заряда, телемеханики и боевого груза составлял 82,5 килограмма; с телемеханикой и боевым грузом — 102,5 килограмма. Согласно расчетам, при вертикальном старте ракета могла развить скорость около 260 м/с, выйдя на высоту 3000 метров. Максимальная скорость полета при горизонтальной траектории — 280 м/с, наибольшая горизонтальная дальность (без участка планирования) — до 6800 метров, наибольшая дальность с участком планирования — 32 километра.
Второй вариант ракеты — «217/И» — принципиально отличается от первого и от общепринятых самолетных схем ввиду специфических условий и особенностей. Так как, преследуя подвижную цель, ракета должна быть весьма маневренной и быстро отклоняться от траектории установившегося движения в любую сторону, у «гирдовцев» возникла мысль о схеме ракеты, симметричной в аэродинамическом отношении относительно продольной оси. «217/П» представляла собой четырехкрылую бесхвостую ракету с малым удлинением и симметричным расположением и профилем крыльев. Корпус и размещение в нем порохового двигателя и отсеков для телемеханики и боевого груза аналогичны первому варианту. Рули были расположены на конце каждого крыла и соединены специальной системой управления. Максимальная скорость при вертикальной траектории для ракеты «217/П» — 265 м/с, наибольшая высота при вертикальном подъеме — 3270 метров, максимальная скорость полета при горизонтальной траектории — 300 м/с, наибольшая горизонтальная дальность (без участка планирования) — 6835 метров, наибольшая дальность с участком планирования — 19 километров.
Летные испытания ракет производились на Софринском артполигоне под Москвой запуском с пускового станка, представлявшего собой сварную трехгранную ферму длиной 10 метров, имевшую направляющие угольники, по которым при старте скользила ракета. Для проведения всевозможных предварительных исследований, опытов и проверки разных схем крыльев и оперения были изготовлены небольшие модели пороховых ракет.
Испытания уменьшенных моделей ракет велись в течение 1935–1936 годов параллельно с работами по ракетам «217», что позволило с минимальными затратами получить обширный экспериментальный материал. Наибольшая дальность полета составила у моделей 2 километра при высоте подъема 700 метров, а у ракет «217» — 1 километр при высоте подъема 300–500 метров.
Всего было сделано значительное количество пусков моделей и несколько пусков ракет «217» без приборов стабилизации и телемеханического управления (при этих полетах рули ракет закреплялись неподвижно). Ракета первого варианта «217/1» после старта значительно уходила в сторону от первоначального направления (на дальности в 1 километр до 100 метров), ложилась в плавный вираж, переходивший затем в падение. Ракета второго варианта «217/Н» двигалась точно в плоскости пускового станка, не уходя никуда в сторону. После окончания горения порохового заряда двигателя ракета продолжала устойчивый полет по инерции, который ничем заметно не отличался от полета с двигателем. Было отмечено, что симметричная схема ракеты с крыльями малого удлинения обладала гораздо большей устойчивостью по сравнению с другими схемами.
После успешных полетов крылатых ракет Сергей Павлович стал начальником сектора, а потом и целого отдела.
Позднее под его руководством была разработана оригинальная методика испытания ракет, для чего построили специальные стенды и приспособления. Так, Королев и его помощники впервые применили старт ракеты с катапульты.
Для этого ими был построен длинный рельсовый путь, по которому ходила тележка. На ней — пороховые двигатели. Они служили стартовыми ускорителями, разгоняли тележку и установленную на ней стартующую ракету. После отрыва от тележки ракета летела уже под действием тяги собственного двигателя. Ракета набирала высоту в зависимости от запаса топлива на борту, а после выключения двигателя автоматически переводилась в планирование или пикирование на цель.
Большое внимание «гирдовцы» уделяли вопросам управления и стабилизации полета крылатой ракеты. Была даже предложена система самонаведения и заказано оборудование, необходимое для этого. Но, к сожалению, оно так и не поступило в РНИИ.
Непосредственно этими вопросами занимался инженер Пивоваров. По его чертежам были построены несколько гироскопических приборов стабилизации (ГПС). Опробовали эти приборы сначала на пороховых крылатых ракетах. Потом перенесли автоматы на ракеты с ЖРД. Наиболее полно управление с помощью автоматов было применено на ракете «06/4» (или «212»).
Были последовательно разработаны и испытаны гироскопические автоматы на одну, две и три степени стабилизации. Автопилоты разрабатывались с учетом специфики их работы на ракетах. Например, для объектов, пускаемых с земли (типа «216» и «212»), характерными особенностями являлись: значительные перегрузки при старте, быстрое нарастание скорости и увеличение угла подъема при наборе высоты, последующий переход к полету по инерции до скорости планирования, затем планирование на угле и так далее.
В последние годы существования РНИИ было сделано еще несколько десятков огневых пусков жидкостных крылатых ракет. Максимальная достигнутая высота подъема составила около километра и дальность полета от 2,5 до 3 километров. При этом следует отметить, что устойчивый полет в плоскости полета был достигнут только в нескольких отдельных случаях: на дальности не более 1000 метров и на высотах 400–500 метров. В дальнейшем с ростом скорости полета и угла подъема автопилоты оказывались неспособными удержать ракету, и последняя начинала «петлять», делала крутые виражи с набором высоты и наконец переходила в падение.
Даже первые эксперименты с моделями крылатых ракет убедили Королева в том, что ракетоплан будущего, способный подниматься в стратосферу и выше, должен быть спроектирован на основании других принципов, нежели обыкновенный самолет.
Наиболее детальный анализ существовавших в то время возможностей для создания такого аппарата содержится в выступлении Сергея Королева на I Всесоюзной конференции по применению ракетных аппаратов для исследования стратосферы, состоявшейся 2 марта 1935 года в ЦДКА имени Фрунзе. В этом выступлении Королев впервые четко определил особенности и возможные схемы пилотируемой ракеты, рассчитал ее весовые и летные характеристики.
«Различными изобретателями, — говорил Сергей Павлович, — было предложено в разное время множество всяческих ракетных аппаратов, которые, по мысли авторов, должны были внести переворот в технику. В большинстве своем эти схемы были очень слабо и в собственно ракетной своей части малограмотно разработаны. В последнее время многие предложения сводились к простой постановке ракетного двигателя (на твердом или на жидком топливе) на общеизвестные типы самолетов. Нет надобности много говорить о всей несостоятельности подобного механического перенесения ракетной техники в авиацию».
Тогда же Королев пояснил, что при всем сходстве ракетного и винтового летательных аппаратов есть различие в динамике их полета, траектории и весовых данных. Ракетоплан представлялся Королеву в виде свободнонесущего моноплана с центрально расположенным фюзеляжем и хвостовым оперением на нем. Ракетоплану присущи малый размах, малое удлинение, малая несущая поверхность. Фюзеляж будет иметь значительную длину, и в нем расположатся в основном двигатели и баки, питающие двигательные устройства. Возможно, что крыло также будет использовано для размещения различных агрегатов двигателя и приборов.
В своем выступлении Сергей Павлович указал те узловые пункты в создании ракетоплана, от которых зависит успех всего дела. Первый — создание мощного двигателя на жидком топливе. Именно от решения этой задачи, считал Королев, зависит «осуществление стратосферного полета человека на ракетном аппарате». Второй — создание герметической кабины больших габаритов, что представляет собой серьезную трудность. Третий — создание и эксплуатация «такого громадного высотного аппарата и необычайная трудность работы с громадными количествами жидких газов».
Сергей Павлович рассмотрел пути преодоления этих трудностей. И сделал он это на основе точного расчета, иллюстрируя свои выводы многочисленными графиками. Концентрированное выражение его мысль нашла в приведенных им данных простейшей крылатой ракеты для полета человека в стратосферу при условии ее минимального веса. Таким весом Сергей Павлович назвал 2 тонны. Пилоту в скафандре он отводил 5,5 % всего веса аппарата, двигателю — 2,5 %, аккумулятору давления — 10 %, бакам — 10 %, конструкции — 22 %. Остальную половину веса составляло топливо. Сергей Павлович считал, что при тяге 2000 килограммов ракета такого веса смогла бы поднять человека на высоту 20 километров.
Полет крылатой ракеты (или ракетоплана) с более совершенным двигателем рисовался Королеву в таком виде: аппарат разгоняется по земле отбрасываемыми пороховыми ускорителями до скорости 80 м/с, взлетает и начинает набор высоты под углом 60 градусов на собственном двигателе. После выработки всего топлива ракета переводится в вертикальный полет по инерции и достигает высоты 32 километров. С этой высоты она пикирует на скорости 600–700 м/с (т. е. на скорости вдвое выше звуковой). Время полета предполагалось 18 минут и дальность — 220 километров.
«В итоге наших расчетов, — говорил Сергей Павлович, — мы получили очень скромные высоты, порядка 20 километров. Заглядывая несколько вперед, отказываясь от технически невыгодных конструкций, совершенствуя двигатель, мы видим возможность достижения высот порядка 30 километров. Даже и эти, сравнительно небольшие, высоты не даются легко».
«Что же можно сделать еще? — задавал Королев сам себе вопрос и сам же отвечал: — Надо искать новые схемы».
Сергей Павлович предлагал попробовать комбинированные и составные ракеты.
«Большая ракета, — пояснял он, — имеет на себе меньшую до высоты, скажем, 5000 метров. Далее эта ракета поднимает еще более меньшую на высоту 12000 метров, и, наконец, эта третья ракета или четвертая по счету уже свободно летит на несколько десятков километров вверх».
Выдвинул он и другое предложение: «Возможно, будет выгодным подниматься вверх без крыльев, а для спуска и горизонтального полета выпускать из корпуса ракеты плоскости, которые развивали бы подъемную силу».
И в докладе на конференции, и в статье в журнале «Техника Воздушного Флота» Сергей Павлович из своих расчетов сделал практический вывод:
«Если не задаваться установлением каких-либо особых рекордов, то, несомненно, в настоящее время уже представляет смысл постройка аппарата-лаборатории, при посредстве которой можно было бы систематически производить изучение работы различных ракетных аппаратов в воздухе.
На нем можно было бы поставить первые опыты с воздушным реактивным двигателем и целую серию иных опытов, забуксируя предварительно аппарат на нужную высоту. Потолок такого аппарата может достигнуть 9-10 километров.
Осуществление первого ракетоплана-лаборатории для постановки ряда научных исследований в настоящее время хотя и трудная, но возможная и необходимая задача стоящая перед советскими ракетчиками уже в текущем году».
По свидетельству сотрудника ГИРДа Николая Ефремова, после организации РНИИ нагрузка на Королева уменьшилась, и у Сергея Павловича появилось свободное время, чтобы вернуться к отложенным проектам новых планеров, конструированием которых он занимался со студенческих лет.
Для разработки одного такого проекта Королев привлек нескольких энтузиастов, согласившихся работать вечерами и дома. Эскизное проектирование, аэродинамический расчет и определение основных характеристик выполнил сам Сергей Павлович. Все проектная работа заняла немногим более двух месяцев. На основе этой конструктивной схемы и апробированных агрегатов: веретенообразного фюзеляжа со средним расположением крыла, оперения и других элементов конструкции — был создан двухместный планерлет «СК-9». Один экземпляр планера изготовили на заводе Осоавиахима. Он прошел все стадии облета и даже совершил дальний перелет за буксировщиком из Москвы в Коктебель, показав неплохие результаты.
Планерлет «СК-9» имел типичные для рекордных планеров аэродинамические формы. Это был моноплан со средне-расположенным крылом большого удлинения, с высоко поднятым на небольшом киле горизонтальным оперением и высоким обособленным рулем направления. Конструкция была выполнена из дерева, только рули и хвостовая часть фюзеляжа частично обшивались тонкой листовой нержавеющей сталью. Именно «СК-9» стал основой для проекта высотного ракетоплана-лаборатории, о котором Королев говорил в своем докладе.
В конце 1935 года начальник РНИИ Иван Клейменов, находясь, вероятно, под впечатлением от Всесоюзной конференции по применению ракетных аппаратов, согласился на включение в план института эскизного проекта ракетоплана.
В короткий срок Королев вместе с инженером Евгением Щетинковым закончили разработку эскизного проекта и 2 февраля 1936 года вынесли его на обсуждение руководства РНИИ.
В первоначальном проекте ракетоплан имел обозначение «РП-218» (или «Объект № 218» — индекс означает: отдел № 2, тема № 18). В приложенной записке Королев излагал свое видение будущего аппарата такими словами:
«Ракетоплан должен нести следующую нагрузку:
а) экипаж — 2 человека с парашютами — 160 кг,
б) скафандры, с кислородными аппаратами — 2 шт. — 40 кг, всего — 200 кг.
<…> Проектом и расчетами должны быть обеспечены следующие полетные данные ракетоплана:
а) наибольшая высота полета (потолок) до 25 000 м,
б) наибольшая скорость горизонтального полета на высоте порядка 3000 м (на базе 1 км) до 300 м/сек,
в) посадочная скорость с опорожненными баками не более 160 км/час,
г) продолжительность горизонтального полета с ракетными двигателями до 400 сек.
<… > Взлет ракетоплана может осуществляться следующими способами:
а) путем подъема РП до высоты 8-10 тыс. м на тяжелом самолете с высотными моторами,
б) путем буксировки РП мощным самолетом до высоты 4–5 тыс. м (а в случае применения специальных устройств до высоты 8-10 тыс. м),
в) путем самостоятельного взлета с земли.
Для обеспечения взлета ракетоплана может быть применен предварительный разгон с помощью пороховых ракет».
Вообще же в РНИИ рассматривались несколько вариантов ракетоплана. Сначала конструкторы остановили свой выбор на проекте двухместного самолета-моноплана «СК-10» нормальной схемы с низким расположением трапециевидного крыла малого удлинения. В передней части фюзеляжа предполагалось разместить герметическую кабину, в которой последовательно располагались бы летчик-испытатель и инженер-испытатель (лицом назад). За кабиной — цилиндрический топливный бак с внутренней перегородкой, отделяющей окислитель от горючего. Вокруг бака компоновалась батарея баллонов сжатого газа, служившая аккумулятором давления вытеснительной системы подачи топлива в камеру сгорания. В хвостовой части предусматривалась установка связки из трех азотно-кислотно-керосиновых двигателей «ОРМ-65» конструкции Валентина Глушко. Ракетный самолет в этом варианте должен был иметь стартовый вес 1600 килограммов, скорость — 850 км/ч, потолок — 9 километров. Его предполагалось использовать для исследований динамики полета пилотируемого ракетного летательного аппарата на больших скоростях.
Этот проект и был утвержден на техническом совещании в РНИИ. Обсуждалась программа его разработки, включавшая в качестве предварительного шага создание более простого ракетоплана-лаборатории «РП-218-1» на базе планер-лета «СК-9» с двигателем небольшой тяги. Техническое совещание приняло решение: «…Отделы института должны предусмотреть работу по 218-му объекту в планах на 1937 год как одну из ведущих работ института».
Вскоре началась разработка рабочих чертежей и оборудования планера «СК-9» под установку ЖРД «ОРМ-65». Это был наиболее отработанный азотно-кислотно-керосиновый двигатель того времени. Он мог развивать тягу до 175 килограммов и скорость истечения на установившемся режиме до 2110 м/с. Пуск двигателя осуществлялся либо вручную, либо автоматически, зажигание — пиротехническое. К 1936 году «ОРМ-65» прошел цикл стендовых испытаний, доказав свою работоспособность после 50 пусков общей продолжительностью свыше 30 минут.
В сентябре 1937 года двигательную установку смонтировали на планере. 3 декабря после проведения серии холодных испытаний по регулировке системы подачи топлива начались огневые испытания.
В 1938 году в связи с изменением структуры института и номеров отделов первая цифра в обозначении объектов РНИИ была изменена, и ракетоплан «218-1» стал обозначаться «РП-318-1».
В феврале 1938 года в докладе о развитии исследовательских работ по ракетному самолету, подготовленном совместно с Щетинковым, Сергей Королев впервые определил область рационального применения ракетоплана в научных, народнохозяйственных и оборонных целях. Тогда же была выдвинута и обоснована идея создания истребителя-перехватчика с ракетным двигателем. Вот что писал по этому поводу сам Сергей Павлович:
«1. Разница в максимальных скоростях современных бомбардировщиков и истребителей настолько мала, что преследование бомбардировщика после маневра практически нецелесообразно, так как за время преследования бомбардировщик успевает пройти десятки и сотни километров. В настоящее время почти нет средств остановить бомбардировщики, летящие сомкнутым строем на высоте 6–8 км со скоростью 500–600 км/час. Появление таких бомбардировщиков на вооружении в ближайшее время вполне реально.
2. Недостаточные вертикальные скорости современных истребителей вызывают необходимость отнесения аэродромов истребительной авиации на 100–140 км от линии фронта. Таким образом, линия перехвата противника может лежать в пределах 80-120 км от фронта, и защита этой полосы («зоны тактической внезапности») чрезвычайно затруднена. Эта зона по мере увеличения скоростей и высот полета бомбардировщиков имеет тенденцию к дальнейшему расширению.
3. Вследствие больших горизонтальных скоростей современных самолетов и больших нагрузок на 1 м2 [крыла] радиусы виражей значительно увеличились и возросли трудности, связанные с нахождением противника в воздухе после маневра. Поэтому воздушный бой при перехвате противника сведется к кратковременной встрече или преследованию.
4. На основе сказанного выявляется необходимость постройки истребителя, обладающего очень большой скоростью и особенно скороподъемностью и предназначенного в основном для защиты зоны тактической внезапности. Запас топлива такого истребителя должен обеспечить продолжительность боя в течение 4–5 мин и дальность полета в пределах зоны тактической внезапности (т. е. 80-120 км). Ракетный истребитель может удовлетворить этим требованиям».
В своем докладе конструктор представил эскизные проекты четырех новых вариантов экспериментального ракетного самолета. Характеристики первого совпадали с «СК-10». В проекте второго, модернизированного, ракетоплана запас топлива увеличивался за счет сокращения экипажа до одного человека. Третий, рекордный, ракетоплан проектировался с учетом использования кислородного ЖРД. При старте с земли он, по замыслу, должен был подняться на высоту в 21 километр, а при пуске с самолета-транспортировщика (типа бомбардировщика «ТБ-3») — до 37 километров.
Рассматривался также перспективный вариант ракетоплана с ЖРД тягой в 900 килограммов. Расчетная высота его полета при пуске с транспортировщика на высоте 8 километров составляла 53 километра. Однако последние два варианта не были технически обеспечены.
Вскоре была создана модель «СК-10», проведены ее продувки в аэродинамической трубе, началось изготовление отдельных узлов натурного образца. Но постройка его в целом приостановилась в связи с отработкой ракетоплана «РП-318-1», которая велась при постоянном и непосредственном участии Королева, готовившегося совершить первые полеты на ракетоплане-лаборатории с работающим ЖРД.
Но тут волна репрессий, набиравшая силу в стране, докатилась и до ракетчиков. Собственно, судьба их была предрешена еще в 1937 году, когда был арестован и расстрелян «высокий покровитель» ГИРДа и РНИИ Михаил Тухачевский. Его покровительство и внимание, проявленное к проблемам ракетчиков, не могли остаться безнаказанными для последних.
Были арестованы и погибли в застенках начальник РНИИ Иван Клейменов и главный инженер РНИИ Георгий Лангемак. В марте 1938 года по ложному доносу арестовали конструктора двигателей Валентина Глушко.
Сергей Королев попал в руки чекистов 27 июня 1938 года. Его обвинили в преступлениях, предусмотренных статьей 58 Уголовного кодекса РСФСР, пункты 7 и 11, в том, что он «состоял членом антисоветской подпольной контрреволюционной организации и проводил вредительскую политику в области ракетной техники». Его обвиняли, например, в том, что он разрабатывал твердотопливную ракету «217» с целью задержать развитие более важных направлений; что он сознательно препятствовал созданию эффективной системы питания для бортового автопилота ракеты «212»; что он разрабатывал заведомо негодные двигатели. В результате через три месяца после ареста Военная коллегия Верховного суда СССР под председательством Ульриха приговорил конструктора к 10 годам тюремного заключения с поражением в правах на пять лет и конфискацией личного имущества.
Ведущим конструктором по «РП-318-1» после ареста Королева был назначен инженер Щербаков, автор ряда проектов высотных планеров. Ведущим конструктором по двигательной установке стал инженер Арвид Палло.
На ракетоплан установили азотно-кислотно-керосиновый двигатель «РДА-1-150» конструкции Леонида Душкина. И в феврале 1939 года начались наземные огневые испытания двигательной установки «РДА-1-150». К октябрю состоялось свыше 100 пусков, в ходе которых отрабатывались системы двигательной установки и снимались ее характеристики. Летчик-испытатель Владимир Павлович Федоров, которому поручалось пилотирование этой необычной машины, осваивал приемы пуска и управления работой двигателя.
Были отработаны следующие параметры двигательной установки: максимальная тяга — 150 килограммов, минимальная — 50 килограммов, время работы на максимальном режиме — 112 секунд. Двигатель обладал устойчивым регулированием тяги.
В свободном полете «СК-9» испытывали еще в январе. При этом баки двигательной установки заполняли разным количеством топлива. Несмотря на возросший почти на 30 процентов полетный вес, планер сохранял высокие полетные качества.
В январе 1940 года ракетоплан привезли на один из подмосковных аэродромов. Здесь провели последние свободные полеты и пять наземных огневых испытаний ЖРД прямо на планере. Специальная комиссия представителей промышленности и научно-исследовательских учреждений постановила допустить машину к ракетному полету.
В конечном виде «РП-318-1» имел следующие характеристики: полный стартовый вес — 636,8 килограмма, вес двигательной установки — 136,8 килограмма, вес топлива — 75 килограммов, вес пилота с парашютом — 80 килограммов, длина — 7,44 метра, размах крыла — 17 метров. Ввиду изношенности планера максимальная скорость была ограничена до 160 км/ч. После ее достижения полет должен был производиться с набором высоты.
Исторический полет ракетоплана «РП-318-1» состоялся 28 февраля 1940 года. Самолет-буксировщик «Р-5» несколько раз прорулил по взлетному полю, подготавливая взлетную дорожку в глубоком снегу. Федоров занял место в кабине пилота.
В 17 часов 28 минут самолет-буксировщик пошел на взлет. На высоте 2800 метров ракетоплан отцепился от буксировщика. Федоров включил ракетный двигатель. Наблюдавшие за полетом видели, как за ракетопланом появилось сначала серое облачко от зажигательной пирошашки, а затем пошел бурый дым. Двигатель заработал на пусковом режиме. Наконец показалась огненная струя длиной около метра. Ракетоплан стал быстро набирать скорость и перешел в полет с набором высоты.
В отчете об этом Федоров пишет так:
«…После отцепки установил скорость 80 км/ч. Выждав приближение самолета Р-5, наблюдавшего за мной, начал включение ракетного двигателя. Включение двигателя произвел на высоте 2600 м согласно инструкции. Пуск РД прошел нормально. Все контрольные приборы работали хорошо. По включении РД был слышен ровный нерезкий шум. <..> Примерно за 5–6 с после включения РД скорость полета возросла с 80 до 140 км/ч. Я установил режим полета с набором высоты 120 км/ч и держал его все время работы РД. По показаниям вариометра подъем проходил со скоростью 3 м/с. В продолжение всей работы РД в течение 110 с был произведен набор высоты 300 м. По израсходовании компонентов топлива перекрыл топливные краны и снял давление. Это произошло на высоте 2900 м.
После включения РД нарастание скорости происходило очень плавно. На всем протяжении работы РД никакого влияния на управляемость РП-318 мною замечено не было. Планер вел себя нормально — вибраций не ощущалось.
Нарастание скорости от работающего РД и использование ее для набора высоты у меня, как у летчика, оставило очень приятное ощущение. После выключения спуск происходил нормально. Во время спуска был произведен ряд глубоких спиралей, боевых разворотов на скоростях от 100 до 165 км/ч. Расчет и посадка — нормальные».
10 и 19 марта 1940 года состоялись еще два успешных полета. Они убедительно доказали, что техника ракетного двигателестроения в Советском Союзе достигла такого уровня, когда строительство ракетопланов с ЖРД могло стать вполне будничным делом. Однако история распорядилась иначе…
Самолет с ракетным двигателем «БИ-1»
Разумеется, Сергей Королев был далеко не единственным конструктором, понимавшим, какие преимущества дает ракетный двигатель самолету и авиации. О необходимости проектирования и строительства экспериментальных летательных аппаратов с реактивными моторами говорили многие и хотя большинство из них видели в решении этой задачи лишь возможность для качественного улучшения самолетного парка, задел «приземленных» конструкторов вполне мог стать первой ступенью на пути к звездам, как мечтали о том Фридрих Цандер и Сергей Королев.
Так, идея скоростного истребителя с ракетным двигателем возникла и получила развитие в ОКБ известного советского авиаконструктора Виктора Федоровича Болховитинова. Весной 1941 года два инженера ОКБ — начальник бригады механизмов Александр Яковлевич Березняк и начальник бригады двигателей Алексей Михайлович Исаев — по своей инициативе начали разработку эскизного проекта истребителя нового типа, обещавшего скорость 800 км/ч и более.
Перед тем, в 1940 году, они посетили РНИИ, где познакомились с конструктором Леонидом Душкиным, который как раз работал над жидкостно-реактивным двигателем для стартового ускорителя реактивного истребителя «302», создававшегося тогда в институте. Вероятно, именно Душкин сумел заинтересовать двух инженеров-авиационщиков идеей, оставшейся в наследство от Королева.
Уже на этапе эскизного проектирования, который осуществлялся в свободное от работы время, Березняку и Исаеву удалось решить ряд сложнейших технических задач. Первоначально они проектировали самолет под двигатель с тягой в 1400 килограммов и с турбонасосной подачей топлива в камеру сгорания, но затем с целью сокращения времени создания самолета более сложная, тяжелая и нуждавшаяся в доводке турбонасосная подача топлива была заменена более простой и уже доведенной вытеснительной подачей с использованием сжатого до 145–148 атмосфер воздуха из бортовых баллонов емкостью 115 литров. За счет этого предполагалось уменьшить размеры машины, улучшить ее разгонные характеристики. Этот вариант самолета с двигателем «Д-1А» (конструкции Леонида Душкина и Владимира Штоколова) стал основным и получил обозначение «БИ»; он выполнялся по обычной в то время схеме одноместного свободнонесущего низкоплана в основном деревянной конструкции.
С началом войны Березняк и Исаев предложили своему шефу Болховитинову подать проект постановления о разработке перспективного перехватчика. Было подготовлено и послано письмо от РНИИ и завода, которое подписали 7 участников, в том числе конструкторы самолета, конструктор двигателя Душкин, директор завода Болховитинов и главный инженер РНИИ Костиков. Любопытно, что во время обсуждения проекта и подготовки письма высказывалось мнение, что такой истребитель будет через полгода не нужен, поскольку к тому времени война закончится победой Красной Армии.
Письмо отправили 9 июля 1941 года, и вскоре все заинтересованные лица были вызваны в Кремль. Предложение инженеров руководство страны одобрило и постановлением Государственного комитета обороны, подписанным Сталиным, бюро Болховитинова поручалось в кратчайший срок (35 дней, вместо трех-четырех месяцев, как того хотели Березняк и Исаев) создать истребитель-перехватчик с ЖРД, а НИИ-3 (так к тому времени назывался РНИИ) — двигатель «РДА-1-1100» для этого самолета.
ОКБ Болховитинова было переведено «на казарменное положение», работали, не выходя с завода. Проектирование закончили за 12 дней. Самолет, согласно этому проекту, имел размах крыльев всего 6,5 метра, длину — 6,4 метра, взлетный вес составил 1650 килограммов, из них 710 килограммов — азотная кислота и керосин. Строили самолет без детальных рабочих чертежей, основные элементы вычерчивали в натуральную величину на фанере — так называемая плазово-шаблонная технология. Однако стальные баллоны для сжатого воздуха, прочные сварные баки для кислоты и керосина, редукторы, трубопроводы, клапаны, рулевое управление, приборы и электрооборудование требовали совсем других сроков конструирования и изготовления.
1 сентября, с опозданием на пять дней, первый экземпляр самолета был отправлен на испытания. На аэродроме были прежде всего начаты пробежки и подлеты на буксире, а силовая установка еще дорабатывалась.
По требованию заместителя наркома авиационной промышленности по опытному самолетостроению Александра Яковлева планер самолета «БИ» был подготовлен к исследованиям в натурной аэродинамической трубе ЦАГИ. Продувки «БИ» проводились под руководством Георгия Бюшгенса (через 45 лет он будет давать заключение по аэродинамике «Бурана»). Сразу после завершения аэродинамических исследований начались летные испытания самолета «БИ» в планерном варианте на буксире за самолетом «Пе-2».
За 15 полетов летчик Борис Николаевич Кудрин снял все основные летные характеристики «БИ» на малых скоростях. Испытания подтвердили, что все аэродинамические данные самолета, характеристики устойчивости и управляемости соответствуют расчетным. Более того, Кудрин и другие летчики, управлявшие планером «БИ», доказали, что после выключения ракетного двигателя перехватчик с высоты 3000–4000 метров сможет вернуться на свой или другой ближайший аэродром в режиме планирования.
16 октября 1941 года, в самый разгар немецкого наступления на Москву, руководство приняло решение об эвакуации КБ и завода Болховитинова на Урал. Уже на следующий день стенд был демонтирован, вся материальная часть и документация отправлены в Свердловск (Екатеринбург). Туда же в 20-х числах октября были эвакуированы сотрудники и оборудование НИИ-3 вместе с КБ Душкина.
После перебазирования на Урал работы над созданием перехватчика «БИ» продолжились в декабре 1941 года в небольшом поселке Билимбай (60 километров западнее Свердловска). КБ и заводу Болховитинова была отведена территория старого литейного завода, где в чрезвычайно трудных условиях и в короткий срок были выполнены восстановительные работы.
Для продолжения отработки самолетной двигательной установки на берегу прилегающего к заводу водоема, на бывшей плотине, построили фанерную времянку, в которой разместили стенд-люльку. От РНИИ испытаниями руководил Арвид Палло, а от ОКБ — инженер Алексей Росляков.
Вместо заболевшего летчика-испытателя Кудрина командование ВВС направило капитана Григория Яковлевича Бахчиванджи (Бахчи), который тут же едва не погиб. 20 февраля 1942 года при запуске двигателя на испытательном стенде, несмотря на грамотные действия Бахчиванджи, произошел взрыв. Струя азотной кислоты под давлением облила лицо и одежду стоявшего рядом Арвида Палло. При взрыве головка двигателя сорвалась с креплений, пролетела между баками азотной кислоты, ударилась о бронеспинку сиденья пилота и сорвала крепежные болты. Бахчиванджи швырнуло головой на доску приборов. Обоих сразу увезли в больницу. К счастью, Бахчиванджи отделался легкой травмой, а глаза Палло спасли очки, хотя ожог на лице последнего остался на всю жизнь.
В марте 1942 года стенд был восстановлен, а в систему питания ЖРД были внесены изменения. На летном экземпляре двигателя провели контрольные гидравлические и 14 огневых испытаний.
25 апреля самолет был переправлен из Билимбая в Кольцово (НИИ ВВС). 30 апреля провели два контрольных запуска двигателя (первый — Палло, второй — Бахчиванджи). Начались работы по подготовке «БИ» к полету.
В конечном виде этот ракетоплан выглядел так. Конструкция — цельнодеревянная, фюзеляж — фанерный монокок, оклеенный полотном, крыло — многолонжеронное с фанерной обшивкой, оперение — фанера в 2 миллиметра, рули и элероны с полотняной обшивкой, баки-баллоны — сварные из хромансиля, шасси — с колесами малых размеров, убираемое пневматически в крыло в направлении оси самолета. Для уменьшения посадочной скорости на задней кромке крыла на участке между бортом фюзеляжа и небольшим элероном устанавливались посадочные щитки Шренка с углом отклонения 50°. Хвостовое оперение нормальное, стабилизатор расчален к фюзеляжу и килю. Небольшие круглые «шайбы» вертикального оперения на концах стабилизатора были установлены уже после постройки опытного самолета в процессе аэродинамических и летных испытаний. Элероны, рули и закрылки имели металлический каркас, обшитый полотном.
Внутри нижней передней части фюзеляжа располагались два воздушных и два керосиновых баллона. За кабиной летчика размещались баллоны с азотной кислотой и воздухом. Кабина летчика имела бронезащиту из передней бронеплиты и бронеспинки толщиной 5,5 миллиметра. Две пушки ШВАК-20 (с 45 снарядами каждая) были установлены перед кабиной летчика в верхней части фюзеляжа на деревянном лафете под съемной (на замках) крышкой. Самолет по вооружению был полноценным истребителем: имелось электроуправление огнем и пневматическая перезарядка.
Двигатель «Д-1А-1100» тягой 1100 килограммов устанавливался в хвостовой части фюзеляжа. Топливо — тракторный керосин, а в качестве окислителя применялась концентрированная 96–98 %-ная азотная кислота, которые подавались в двигатель под давлением воздуха из бортовых баллонов (на килограмм керосина приходилось 4,2 килограмма окислителя). Двигатель расходовал 6 килограммов керосина и кислоты в секунду. Общий запас топлива на борту самолета, разный 705 килограммам, обеспечивал работу двигателя в течение почти 2 минут.

Истребитель-перехватчик с ракетным двигателем «БИ-1»
Первый полет на истребителе «БИ» (иногда обозначавшемся как «БИ-1») летчик Бахчиванджи выполнил 15 мая 1942 года. Взлетная масса самолета в первом полете была ограничена 1300 килограммами, а двигатель отрегулирован на тягу 800 килограммов. Полет продолжался чуть более 3 минут.
О первом полете «БИ» вспоминает инженер-конструктор Борис Черток:
«Все отошли от самолета, кроме Палло. Он в последний раз хотел убедиться, что никакой течи нет. Внешне все было сухо.
Бахчи спокойно сказал: «От хвоста», — закрыл фонарь, включил подачу компонентов и зажигание.
Мы все столпились метрах в пятидесяти от самолета. Каждый из нас уже не раз видел работу двигателя на стенде и при пробежках самолета здесь, на аэродроме. Когда из хвоста крохотного самолета вырвалось ослепительное пламя, все вздрогнули. Видимо, сказалось нервное напряжение длительного ожидания.
Рев двигателя над затихшим аэродромом и яркий факел возвестили начало новой эры. Сотни людей 15 мая 1942 года наблюдали, как самолет стал быстро разбегаться по взлетной полосе. Он легко оторвался от земли и взлетел с резким набором высоты. С работающим двигателем самолет развернулся в одну сторону на 90 градусов, потом в другую, только успел перейти с крутого подъема на горизонтальный полет и факел исчез.
Росляков, стоящий рядом, взглянул на остановленный хронометр: «Шестьдесят пять секунд. Топливо кончилось».
Садился БИ, стремительно приближаясь к земле с неработающим двигателем. Это была первая для Бахчи посадка в таком режиме. Она получилась жесткой. Одна стойка шасси подломилась, колесо отскочило и покатилось по аэродрому. Бахчи успел откинуть фонарь и выбраться из машины раньше, чем подъехали Федоров и Болховитинов, а также пожарная и санитарная машины. Бахчи был очень огорчен неудачной посадкой. Но подумаешь, какая беда — подломились шасси. Подбежавшая толпа, несмотря на протесты, тут же начала качать Бахчи».
Самописцы зафиксировали максимальную высоту полета 840 метров, скорость — 400 км/ч, скороподъемность — 23 м/с. В послеполетном донесении летчик отмечал, что полет на самолете «БИ» в сравнении с обычными типами самолетов исключительно приятен: перед летчиком нет винта и мотора, не слышно шума, выхлопные газы в кабину не попадают; летчик, сидя в передней части самолета, имеет полный обзор передней полусферы и значительно лучший, чем на обычном самолете, обзор задней полусферы; расположение приборов и рычагов управления удачное, видимость их хорошая, кабина не загромождена; по легкости управления самолет превосходит современные ему истребители.
Государственная комиссия, призванная оценить результаты первого полета, в своем заключении писала: «Взлет и полет самолета БИ-1 с ракетным двигателем, впервые примененным в качестве основного двигателя самолета, доказал возможность практического осуществления полета на новом принципе, что открывает новое направление развития авиации».
В связи с износом конструкции планера «БИ-1», обусловленным агрессивным воздействием паров азотной кислоты, последующие летные испытания проводились на втором «БИ-2» и третьем «БИ-3» опытных самолетах, отличавшихся от первого только наличием лыжного шасси. Одновременно было принято решение начать постройку небольшой серии самолетов «БИ-ВС» для ИХ войсковых испытаний. От опытных самолетов «БИ-ВС» отличались вооружением: в дополнение к двум пушкам под фюзеляжем по продольной оси самолета перед кабиной летчика устанавливалась бомбовая кассета, закрытая обтекателем. В кассете размещалось десять мелких бомб массой по 2,5 килограмма, обладавших большой взрывной силой. Предполагалось, что эти бомбы будут сбрасываться над бомбардировщиками, идущими в боевом строю, и поражать их ударной волной и осколками.

Экспериментальный истребитель «БИ-2»
Второй полет опытного самолета «БИ» состоялся 10 января 1943 года. За короткий срок на нем были выполнены четыре полета: три летчиком Бахчиванджи и один (12 января) летчиком-испытателем Константином Груздевым. В этих полетах были зафиксированы наивысшие летные показатели самолета «БИ»: максимальная скорость до 675 км/ч (расчетная — 1020 км/ч на высоте 10 километров), вертикальная скороподъемность — 82 м/с, высота полета — 4000 метров, время полета — 6 минут 22 секунды, продолжительность работы двигателя — 84 секунды.
В полете Груздева при выпуске шасси перед посадкой оторвалась одна лыжа, но он благополучно посадил самолет.
В воспоминаниях Палло имеется колоритное высказывание Груздева после полета на «БИ»: «И быстро, и страшно, и очень позади. Как черт на метле».
Полет на «БИ» был действительно очень труден в моральном смысле. Сесть на нем можно было только после выработки горючего, неприятно было соседство с азотной кислотой под большим давлением, иногда прорывавшейся наружу через стыки проводки, а то и через стенки трубок и баков. Эти повреждения приходилось все время устранять, что сильно задерживало полеты, продолжавшиеся всю зиму 1942/43 годов.
Шестой и седьмой полеты выполнялись Бахчиванджи на «БИ-3». Задание летчику на седьмой полет, состоявшийся 27 марта 1943 года, предусматривало доведение скорости горизонтального полета самолета до 750–800 км/ч по прибору на высоте 2 километров. По наблюдениям с земли, седьмой полет, вплоть до конца работы двигателя на 78-й секунде, протекал нормально. После окончания работы двигателя самолет, находившийся в горизонтальном полете, опустил нос, вошел в пикирование и под углом около 50° ударился о землю. Летчик-испытатель Григорий Бахчиванджи погиб. В 1973 году, через 30 лет после гибели, ему было присвоено звание Героя Советского Союза.
Комиссия, расследовавшая обстоятельства катастрофы, в то время не смогла установить подлинные причины перехода в пикирование самолета «БИ». Но в своем заключении она отмечала, что еще не изучены явления, происходящие при скоростях полета порядка 800-1000 км/ч. По мнению комиссии, на этих скоростях могли появиться новые факторы, воздействующие на управляемость и устойчивость, которые расходились с принятыми в то время представлениями, а следовательно, остались неучтенными.
В 1943 году в эксплуатацию была пущена аэродинамическая труба больших скоростей Т-106 ЦАГИ. В ней сразу же начали проводить широкие исследования моделей самолетов и их элементов при больших дозвуковых скоростях. Была испытана и модель самолета «БИ» для выявления причин катастрофы. По результатам испытаний стало ясно, что «БИ» разбился из-за особенностей обтекания прямого крыла и оперения на околозвуковых скоростях и возникающего при этом явления затягивания самолета в пикирование, преодолеть которое летчик не мог.
После гибели Бахчиванджи недостроенные 40 самолетов «БИ-ВС» были демонтированы, но работы по этой теме продолжались еще некоторое время. С целью изучения возможности увеличения продолжительности полета ракетного истребителя-перехватчика типа «БИ», составлявшего всего 2 минуты, в 1943–1944 годах рассматривалась модификация этого самолета с прямоточными воздушно-реактивными двигателями на концах крыла. На шестом экземпляре «БИ-б» установили такие двигатели. Самолет испытали в натурной аэродинамической трубе ЦАГИ Т-101 весной 1944-го, но дальше этих экспериментов дело не пошло.

Модель истребителя-перехватчика «БИ-6» в аэродинамической трубе
В январе 1945 года, по возвращении КБ в Москву, на самолете «БИ» с лыжным шасси и двигателем «РД-1» конструкции Алексея Исаева, являвшимся развитием двигателя «Д-1А-1100», летчик Борис Кудрин выполнил два полета В одном из этих полетов при взлетной массе самолета 1800 килограммов и скорости 587 км/ч вертикальная скорость «БИ» у земли составила 87 м/с
При полетах «БИ-7», отличавшегося от остальных «БИ» формой зализов крыла и наличием на моторных капотах обтекателей дугового пускача, возникла вибрация и тряска хвостового оперения. Чтобы выяснить причины этих явлений, по аналогии с компоновкой «БИ-7» были модифицированы «БИ-5» и «БИ-6». В марте — апреле 1945 года проводились их летные испытания в планерном варианте (без включения ЖРД).
В качестве буксировщика использовался бомбардировщик «B-251». «БИ-5» испытывался с лыжным шасси, а «БИ-6» — с обычным колесным. Никакой тряски или вибрации на них выявить не удалось.
Эти полеты были последними для истребителей «БИ», так как вскоре работы по данной тематике свернули. Всего же для проведения различных испытаний было построено 9 самолетов серии «БИ».
У создателей истребителя с жидкостным ракетным двигателем «БИ» имелись конкуренты в самом РНИИ. Еще до войны в Реактивном институте была начались работы по проектированию истребителя с необычной силовой установкой, состоявшей из одного разгонного ЖРД и двух прямоточных воздушно-реактивных двигателей с прямоугольными управляемыми соплами под крылом. Таким был самолет по проекту 1940 года, задуманный как первый в мире истребитель с составной реактивной группой.
Тут нужно сделать отступление и отметить, что в РНИИ имелся довольно мощный задел по конструированию прямоточных воздушно-реактивных двигателей (ПВРД). Еще во времена ГИРДа в составе Группы работала так называемая «третья» бригада под руководством талантливого конструктора Юрия Александровича Победоносцева.
Опираясь на теорию воздушно-реактивных двигателей, созданную академиком Борисом Стечкиным, третья бригада ГИРДа вплотную подошла к практическому воплощению этих идей, запустив 15 апреля 1933 года первую действующую модель ПВРД.
Как известно, прямоточные двигатели начинают работать только на очень большой скорости, когда воздух, входящий в горючую смесь, сжимается вследствие напора встречного потока воздуха. Как же разогнать двигатель до большой скорости? В бригаде нашли очень интересный прием: вмонтировали миниатюрный воздушно-реактивный двигатель в артиллерийский снаряд и выстреливали его из пушки. Развив большую скорость, двигатель включался и развивал тягу, величину которой определяли по прибавке дальности у снаряда с двигателем в сравнении с обычным.
Конструктивно двигатель в снаряде, получивший обозначение «Объект ГИРД-08», выглядел так. В специальный канал, сделанный в теле снаряда, закладывалось горючее — фосфор. Сверху ой заливался лаком, чтобы сам собой не воспламенялся (фосфор ведь самовозгорается на воздухе). А чтобы в полете очистить горючее от защитной пленки, в канал вставляли металлический ежик. При выстреле из орудия снаряд летел вперед, а ежик, сдирая пленку, — назад. Фосфор вспыхивал, и двигатель включался в работу.
На основе опытов Победоносцева его ученик — инженер Иван Меркулов создал двухступенчатую ракету с ПВРД, получившую обозначение «Р-3». В качестве горючего для этой необычной ракеты использовались шашки, состоявшие из смеси алюминиевого и магниевого порошков. В двигатель ракеты заряжались две кольцеобразные шашки с одинаковым внешним, но с различным внутренним диаметрами, благодаря чему обеспечивался требуемый профиль канала, по которому из диффузора поступал необходимый для их горения воздух. Всего было изготовлено 16 ракет «Р-3»; первая из них стартовала в феврале 1939 года. Для определения параметров траектории впервые была приглашена бригада астрономов с аппаратурой, используемой при слежении за метеоритами.
Таким образом, для инженеров РНИИ прямоточные воздушно-реактивные двигатели были не в новинку. Только теперь для их разгона до рабочей скорости предлагалось использовать жидкостный ракетный двигатель простой схемы.
Согласно проекту, ракетный истребитель НИИ-3, получивший рабочее обозначение «302», должен был иметь деревянную конструкцию, крыло и оперение — с фанерной обшивкой, фюзеляж — монокок. Первый вариант силовой установки (ЖРД и 2 ПВРД) предполагал наибольшую скорость — 900 км/ч, потолок — 9000 метров и время набора предельной высоты — 2 минуты. При боезапасе к 4 пушкам в 400 снарядов, запасе горючего в 505 килограммов и окислителя 1230 килограммов, взлетная масса самолета должна была составить 3358 килограммов.
Весной 1941 года проект истребителя с комбинированной силовой установкой был доложен и утвержден на Техсовете института. Во второй половине 1942 года Андрей Костиков ознакомил с проектом члена ГКО Климента Ворошилова. В тот же день на приеме у Сталина проект «302» был утвержден, а сам Костиков был назначен Главным конструктором ОКБ-55 и директором опытного завода. Начальником ОКБ стал авиаконструктор Матус Рувимович Бисноват, а аэродинамическими расчетами ведал Михаил Тихонравов.
К весне 1943 года выявилось отставание от графика с выпуском прямоточных ВРД конструкции инженера Зуева: они были закончены лишь в виде моделей в половину натуральной величины и полных испытаний не проходили. Жидкостный ракетный двигатель конструкции Душкина «Д-1А-1100» тягой 1100 килограммов с дополнительной камерой на 450 килограммов также еще не был готов и его огневые испытания только начинались.
Из-за неготовности двигателей было принято решение испытать истребитель в планерном варианте, получившем обозначение «302П». С самолета сняли вооружение и некоторое оборудование, а в хвостовой части фюзеляжа поставили макет однокамерного ЖРД под обтекателем. В конце августа 1943 года он поступил на испытания в Летно-исследовательский институт.

Проекции истребителя «302»
Эти испытания выявили не вполне удовлетворительные характеристики устойчивости, и планер «302П» отправили в ЦАГИ, где испытали в натурной аэродинамической трубе.
После доработок самолет был всесторонне изучен в нескольких десятках полетов на буксире за «Ту-2» и «В-25». По оценке летчика-испытателя Сергея Анохина, планер «302П» был исключительно устойчив и управляем по всем осям, хорошо скользил, выполнял «бочки», был прост на посадке после отцепки от буксировщика. Марк Галлай, летавший на «302П», называл машину «эталоном». Установленная на испытаниях посадочная скорость 115–120 км/ч отвечала нормальному режиму посадки перехватчика.
Однако до испытаний с двигателями дело так и не дошло. Работы по теме были свернуты, поскольку двигателисты не смогли создать ПВРД с расчетными характеристиками.
Истребитель с ракетным двигателем «Малютка»
Но не только в РНИИ и ОКБ Болховитинова разрабатывались перспективные боевые самолеты с ракетными двигателями — другие авиаконструкторы также пробовали себя в этой области, рассчитывая дать фронту машину, которая смогла бы изменить само представление о воздушной войне.
Одной из таких машин мог стать истребитель-перехватчик кратковременного действия «Малютка». Он проектировался в 1943–1944 годах в КБ знаменитого авиаконструктора Николая Николаевича Поликарпова и под те же тактико-технические требования, что и самолеты «БИ» и «302».
По этому проекту, «Малютка» представляла собой низкоплан минимальных размеров, с прямым крылом. Он имел «смешанную» конструкцию: фюзеляж — фанерный монокок, крыло цельнометаллическое, как и оперение. Опора — шасси с носовым колесом. Вооружение — две пушки калибра 23 миллиметра. Длина самолета — 7,3 метра, полный вес — 2795 килограммов, из них вес топлива — 1500 килограммов. Согласно расчетам, «Малютка» должна была развивать скорость до 845 км/час в полете продолжительностью от 8 до 14 минут, поднимаясь до рекордной высоты в 16 километров!
В качестве силовой установки Поликарпов планировал установить на «Малютку» жидкостно-реактивный двигатель тягой в 1000 килограммов, сконструированный Валентином Глушко, который в это время возглавлял коллектив ракетчиков, работавший в ОКБ НКВД при заводе № 16 в Казани. В качестве топлива в этом двигателе использовался керосин, окислителя — азотная кислота.
Прототип истребителя был уже практически готов, когда 30 июля 1944 года Николай Поликарпов умер. Проект имел как сторонников, так и влиятельных противников, поэтому со смертью Поликарпова все работы по «Малютке» были прекращены.

Истребитель-перехватчик с ракетным двигателем «Малютка»
Реактивные истребители Бартини
Еще один проект истребителя будущего разрабатывал самый эксцентричный конструктор в истории авиации Роберто Людовигович Бартини (Роберто Орос ди Бартини). Итальянский барон-коммунист, сделавший блестящую карьеру в стране Советов, Бартини был арестован в 1937 году как «пособник» Тухачевского и, что ожидаемо, оказался в Центральном конструкторском бюро № 29 (ЦКБ-29) НКВД, после начала войны эвакуированном в Омск.
Здесь, в начале 1942 года, Бартини получил персональное задание Лаврентия Берия на разработку и создание высокоскоростного истребителя-перехватчика. В конечном итоге конструктор предложил к разработке два варианта такого самолета:
Под обозначением «Р» фигурировал сверхзвуковой одноместный истребитель типа «летающее крыло» с крылом малого удлинения с большой переменной по размаху стреловидностью передней кромки, с двухкилевым вертикальным оперением на концах крыла и с однолыжным убираемым шасси. Силовая установка была скомпонована по принципу газодинамического слияния несущих и тянущих устройств — слияния двигателя и крыла. Это достигалось превращением внешних отсеков крыла в плоские прямоточные комбинированные двигатели, в которых применялась инжекция воздуха перегретыми парами топлива и окислителя с рекуперацией внутреннего и внешнего нагрева поверхности конструкции.
Под обозначением «Р-114» проходил зенитный истребитель-перехватчик с четырьмя ЖРД («РД-1» конструкции Глушко на азотно-кислотно-керосиновом топливе по 300 килограммов тяги каждый), со стреловидным крылом, имеющим управление пограничным слоем для увеличения аэродинамического качества крыла; шасси — одна убираемая лыжа. Были разработаны аэродинамические профили и, в частности, — профили с отсосом пограничного слоя. К самолету разрабатывался инфракрасный локатор. «Р-114» должен был развивать невиданную для 1942 года скорость — более 2000 км/ч!
Разумеется, такие далеко опережавшие свое время проекты в те годы не могли быть осуществлены из чисто технологических соображений. Осенью 1943 года конструкторское бюро Бартини было закрыто.
Не забыл о своей мечте и Сергей Королев. В 1939 году Особое совещание НКВД изменило Сергею Павловичу статью приговора с «участия в контрреволюционном заговоре» на «вредительство в области военной техники»; изменили и срок — с 10 лет на 2 года. В начале 1940 года Королева вернули по этапу в Москву, и до ноября 1942 года его жизнь была связана с ЦКБ-29, где он работал в группе Андрея Туполева над проектом бомбардировщика «103» («Ту-2»). И здесь Сергей Павлович вновь возвращается к проблематике ракетных двигателей и ракетопланов.
Первый из выявленных сегодня документов, свидетельствующих о возвращении Королева к любимой теме, датирован 6 августа 1941 года. Он содержит прикидочные расчеты «Объекта AT», крылатой аэроторпеды. Скорее всего здесь мы имеем дело с попыткой мобилизовать весь предшествующий опыт ГИРД и РНИИ для того, чтобы быстро дать Красной Армии новое оружие, способное существенно увеличить эффективность бомбардировщика «Ту-2».
Много внимания здесь Королев уделяет двигательной установке. Он анализирует возможности «AT» при ее стартовом весе 200 килограммов и жидкостном реактивном двигателе. В различных вариантах расчетная дальность полета составляла от 34 до 67 километров. Просчитаны также два варианта двигательной установки с воздушно-реактивным двигателем. Расчетная дальность полета при этом составляла соответственно 420 и 840 километров.
Для ЖРД рассчитаны расход окислителя и горючего, величина давления в камере сгорания, давление подачи топлива, а также величина средней скорости, угол набора высоты.
Очевидно, эта работа была санкционирована руководством НКВД, поскольку в расчетах Королев оперирует данными НИИ-3, которые были получены уже после его ареста.
Кроме расчетов по двигателям, в документе от 6 августа мы находим много карандашных набросков — общие виды и различные детали ракет. По-видимому, составленные на основе этих набросков проектные предложения были представлены начальству, и это сыграло важную роль в кажущемся без этого неожиданным изменении дальнейшей судьбы Королева.
В ноябре 1942 года поступило предписание препроводить заключенного в Казань. Там при авиационном заводе № 16 существовало ОКБ Спецотдела НКВД СССР. В разное время в это ОКБ входило несколько коллективов со своей тематикой и главными конструкторами. В их число входило и КБ-2 главного конструктора Валентина Глушко по разработке авиационных ЖРД
8 января 1943 года в ОКБ была создана группа реактивных установок (РУ) — группа № 5, главным конструктором которой стал Сергей Королев. Незадолго до этого он направляет записку начальнику Спецотдела НКВД СССР, в которой излагает общие положения проекта перспективного истребителя-перехватчика «РП».
В первой главе записки Сергей Павлович отмечает, что вскоре будут закончены доводочные работы по двигателю «РД-1» конструкции Глушко, и это откроет прямой путь к созданию ракетного самолета.
Далее Королев упоминает о «БИ» и дает этому ракетоплану довольно лестную характеристику, но указывает, что использование нового двигателя «РД-1» вместо «Д-1А-1100» заметно улучшит характеристики всей машины в целом.
Однако и планер «БИ» не устраивает Королева, он выдвигает собственный проект истребителя с ЖРД:
«РП — одноместный самолет, моноплан с низким расположением крыла, фюзеляжем, несущим пилота, вооружение, часть баков, двигательную установку и хвостовое оперение. Шасси трехколесное, но значительно более низкое, чем обычно, вследствие отсутствия на машине винта. Трехколесное шасси обязательно необходимо как для обеспечения работы двигателя при движении самолета у земли, так и облегчения взлета и посадки подобной машины. Конструкция машины в основном деревянная (хвостовая часть фюзеляжа, несущая двигатель, из дюраля), не требующая применения никаких специальных или дефицитных материалов. Топливные баки обычного типа, сварные из алюминия.
Двигатель устанавливается в хвостовой части фюзеляжа с направлением своих сопел назад по полету. Камера двигателя с газогенераторной форкамерой, постоянно работающая, и еще одна камера расположены на хвосте фюзеляжа, а еще две камеры на крыльях с наклоном вниз на 5°.
<…> На РП была принята установка жидкостного реактивного двигателя РД-1 со следующими основными данными:
Максимальная тяга у земли, кг 1200
Вес двигателя, кг 180
Максимальная тяга на 10 км, кг 1300
<… > Высотность двигателя — неограниченная. В качестве топлива используются азотная кислота и тракторный керосин. Не требуются винты и радиаторы, отсутствуют моторные вибрации».
Область применения истребителя «РП» видится Королеву такой:
«РП предназначается для борьбы с авиацией противника в воздухе при обороне определенных пунктов — городов, укрепленных объектов и линий и т. д.
Упреждение при вылете обычных истребителей обороны для встречи противника, идущего на высоте 6–8 км со скоростью 550 км/час, составляет около 70-100 км и более (зона тактической внезапности). Для РП эта величина сокращается до 13–18 км. Резкое превосходство летных качеств позволит РП догнать и уничтожить любой современный самолет, летящий с любой скоростью, на сколь угодно большой высоте и попавший в зону его действия.
РП также может быть использован для внезапной быстрой атаки наземных целей — танков, батарей, зенитных точек противника, переправ и т. д.
Обладая весьма значительной скороподъемностью (набор высоты 10 км за 2 мин) и максимальной скоростью горизонтального полета 1000 км/час, РП сможет держать инициативу боя в своих руках, имея возможность внезапного стремительного нападения, а в случае необходимости и быстрого маневра для занятия новой исходной или более выгодной позиции и для повторного нападения.
Довольно значительная для реактивных самолетов продолжительность полета (10–18 мин при скорости 800 550 км/час и максимальная продолжительность полета 30 мин) позволит РП выполнить все эти маневры».
Разумеется, для выполнения всех этих задач необходимо иметь на истребителе комплект вооружения. Королев предусмотрел и это. На «РП» он планировал установить две пушки «ВЯ» калибром 23 миллиметра с запасом 150 снарядов и пулемета «ВС» с запасом патронов. В перегруженном варианте была возможна подвеска 6 реактивных снарядов калибра 82 миллиметра.
Реактивные бомбардировщики «Пе-2»
Конечно, Королев понимал, что до реализации проекта «РП» в полном объеме еще очень далеко. Потому в качестве первого этапа он рассматривал возможность создания экспериментального ракетоплана на основе пикирующего бомбардировщика «Пе-2».
В реализации этой идеи Королеву помог генеральный конструктор завода, выпускавшего «Пе-2», — Владимир Михайлович Мясищев.
Подробнее о начале и первых результатах работы по модернизации «Пе-2» можно узнать из докладной записки Королева начальнику Спецотдела НКВД СССР:
«…Прибыв 19/XI — 1942 г. в Казань, — пишет Сергей Павлович, — я имел задание ознакомиться с работами, ведущимися по реактивным двигателям.
ОКБ завода № 16 работало над созданием четырехкамерного реактивного двигателя РД-1 с тягой 1200 кг на жидком топливе с питанием от автономно действующего турбонасосного агрегата для самолетов.
Эта работа была построена таким образом, что вначале отрабатывалась секция РД-1 в виде одной камеры с тягой 300 кг и системой питания от постороннего источника энергии (на стенде — от электромотора).
Объем всей работы по РД-1 достаточно велик и технически труден и потому первый ее этап — однокамерный двигатель с приводом являлся наиболее реальным и близким к осуществлению.
Одновременно простейшие подсчеты показали, что целесообразна установка однокамерного РД-1 тягой 300 кг в качестве вспомогательного двигателя на самолет Пе-2 с приводом от мотора М-105.
В этой постановке становилась реальной не только задача в кратчайший срок испытать и отработать РД-1 в воздухе, но и самолет с реактивной установкой приобретал летные данные, могущие представить самостоятельный интерес для боевого применения. Несомненно также, что опыт установки реактивного двигателя на самолете в качестве вспомогательного двигателя должен послужить надежной базой для создания в будущем чисто ракетного самолета».
Все расчетно-проектные работы по оснащению «Пе-2» реактивной установкой «РУ-1» заняли у группы Королева четыре месяца. Всесторонний анализ проекта показал, что модернизация бомбардировщика заметно улучшит его характеристики.
Поскольку двигатель требовал 90 килограммов топлива в минуту, то 900 килограммов топлива, запасенных на борту самолета, обеспечивали двигателю десятиминутную работу. За счет реактивной тяги скорость «Пе-2» в полете должна была возрасти на высоте 7 километров на 108 км/ч. Как видим, прибавка весьма солидная, и достигалась она за 80-100 секунд. Причем увеличивать скорость полета можно было в любой момент простым включением рубильника в кабине летчика. Расчет также подтвердил, что чем больше высота, тем эффективнее «РУ-1».
Но не только в увеличении скорости полета заключался смысл реактивной установки. В случае необходимости она могла помочь сократить взлетный разбег «Пе-2» на 70 метров.
«Вертикальная скорость при отрыве от земли с включенной РУ-1 возрастает на 30 процентов и соответственно увеличивает возможный угол набора высоты, — писал Королев, — что важно при взлете с аэродрома, ограниченного препятствиями».
Окончательный расчет самолета с дополнительным реактивным двигателем Сергей Павлович утвердил 24 мая 1943 года. Во введении он писал:
«Необходимо отметить, что РУ-1 является совершенно новым техническим агрегатом, впервые осуществленным на самолете с целью испытания и отработки реактивного двигателя в летных условиях».
Подготовка самолета и изготовление всех частей «РУ-1» велись быстрыми темпами. Уже в том же 1943 году на одном из заводских аэродромов можно было видеть внешне почти обычный «Пе-2», но стоявший отдельно от своих собратьев и время от времени (когда подходил срок огневых испытаний) громко гудевший и извергавший огненную струю из сопла, помещенного в его хвостовой части. Самолет этот значился в документах под номером 15/185.
В техническом описании, составленном Королевым специально для заводских испытаний первенца, говорилось, что «для грамотной эксплуатации РУ-1 требуется тщательное, глубокое изучение конструкции ее агрегатов и систем, строгое соблюдение всех правил обращения с ними». Экипаж самолета состоял из трех человек: летчика, инженера-экспериментатора на месте штурмана и еще одного инженера на месте стрелка-радиста.
В инструкции четко определялось все, что надо делать при подготовке опытной машины к полетам.
«Любые отступления от установленных правил допустимы лишь с письменного разрешения главного конструктора РУ-1», — предупреждал Королев.
Для проведения заводских испытаний «Пе-2» с реактивным двигателем была создана комиссия. В нее вошли конструктор двигателя Валентин Глушко и автор реактивной установки Сергей Королев. Пилотировал экспериментальный самолет летчик-испытатель Васильченко. Королев также был включен в летный экипаж в качестве инженера-экспериментатора.
Испытания в воздухе проводились по широкой программе. Первый полет предназначался для пробного включения и рассчитывался на 30 минут. Потом предстояли шесть полетов общей продолжительностью в четыре с половиной часа для включения РУ в режиме максимальной скорости на высоте 2,5, 5 и 7 километров. После этих испытаний экипажу нужно было готовиться к полетам при двукратном включении ракетного двигателя и на максимальной скорости. Планировалось два таких полета. Далее в программе значились полеты с двумя запусками ракетного двигателя на малой высоте, у земли. Затем следовали три полета с включением «РУ-1» на взлете, еще два в режиме набора высоты. Всего планировалось шестнадцать полетов. В действительности же программа испытаний сильно разрослась и заняла почти два года
Первый раз самолет «Пе-2» с включенным ЖРД взлетел 1 октября 1943 года. Ракетный двигатель работал 2 минуты, и его выключили, когда самолет вошел в облака. К моменту остановки давление в камере сгорания возросло до 2030 атмосфер, а скорость полета увеличилась на 92 километра в час.
Через день — повторный полет. Ракетный двигатель включили на скорости 365 километров в час, и он работал 3 минуты. После этого обороты моторов увеличили, и ЖРД тянул еще минуту. И опять все оборудование после полета оказалось полностью в исправности.
Ощущения пилота при включении «РУ-1» описаны в отчете:
«В первые секунды создавался небольшой кабрирующий момент и ощущалось ускорение. Возникало давление на штурвал, которое легко устранялось летчиком. Условия пилотирования не ухудшались».
4 октября 1943 года экипаж шесть раз поднимался с бетонной полосы при включенной реактивной установке. Она работала каждый раз по минуте и каждый раз сокращала длину разбега. Затем начались систематические полеты, продолжавшиеся до мая 1945 года. РД включался десятки раз на разных высотах и на максимальных скоростях.
В течение всех испытаний Сергей Королев, как правило, непосредственно находился на борту летающей реактивной лаборатории. Поначалу РУ преподносила экипажу сюрпризы. Так, в одном из полетов вышла из строя газовая трубка на высоте 2500 метров, в другой раз упало давление в камере сгорания, а как-то двигатель даже самовыключился.
Всего на «Пе-2» было совершено 110 полетов, в том числе 29 с включенной реактивной установкой. Четырнадцать раз экипаж поднимался для отладки оборудования, 67 полетов было выполнено для отработки зажигания. Эта последняя задача в первоначальной программе испытаний не значилась, но потребовала львиной доли летного времени. Дело в том, что поначалу пусковая смесь зажигалась с помощью электрической свечи накаливания. Но свеча работала неустойчиво, особенно на больших высотах. Тогда Валентин Глушко разработал систему химического зажигания двигателя (ХЗ) и название двигателя соответственно изменилось на «РД-1ХЗ». Эту систему опробовали, а затем доводили в многочисленных полетах.
«Двигатель РД-1 с химическим зажиганием, — отмечалось в отчете об испытаниях, — надежен на земле и в воздухе. Допускает повторные включения, число которых зависит от запаса пусковой самовоспламеняющейся жидкости».
Задолго до завершения испытаний стало ясно: надежды конструкторов оправдываются. В начале 1944 года Сергей Павлович записал: «Испытания показывают, что двигатель РД и реактивная установка в целом работают нормально. Хорошо совпадают экспериментальные и расчетные данные. Таким образом, в настоящее время имеется опробованная в воздухе материальная часть вспомогательного двигателя и реактивной установки Пе-2».
Среди документов периода войны есть заключение по реактивной установке Сергея Королева, подписанное известным авиаконструктором Владимиром Мясищевым и директорами заводов: «Считать целесообразным предъявить реактивную установку с двигателями РД-1ХЗ на самолете Пе-2 № 15/185 на испытания совместно с представителями ВВС КА по согласованной программе».


Пикирующий бомбардировщик «Пе-2»
Однако Королев не собирался останавливаться на достигнутом. Для него летные испытания бомбардировщика «Пе-2» с реактивной установкой (его еще называли «Пе-2РУ») были лишь завершением первого этапа работы. Он считал, что теперь настало время наметить ее дальнейшее развитие, и предлагает три направления, или, как он пишет, три варианта.
Вариант ускорителя, «РУ-1у» для самолета «Пе-2», бомбардировщика или разведчика, с целью улучшить его летные данные. В основу при этом кладется существующая установка «РУ-1» с изменениями, необходимыми для запуска в серию.
Вариант высотный, «РУ-1в». Он, как пишет Сергей Павлович, «…представляет собою реактивную установку с двумя камерами РД-1 с тягой 600 кг, установленную на самолете Пе-2 с мотором М-82 и ТК, специально приспособленным как одноместный истребитель для выполнения высотных полетов с герметической кабиной и мощным стрелковым вооружением. Зона работы такой машины на высоте 13–15 км при скоростях около 760 км/час. При этой работе используются основные агрегаты и устройства существующей уст-ки РУ-1, а общая компоновка производится заново».
Стартовый вариант, «РУ-1с». По мысли Королева, он «…представляет собой типовую секцию с одной камерой сгорания РД-1 и агрегатами запуска, с запасом топлива на 20–30 секунд работы. Подача топлива осуществляется без помощи каких-либо насосов и приводов, а под давлением сжатого воздуха, размещаемого в той же конструкции. Устанавливая нужное количество таких стартовых секций РУ (2, 4, 6 шт. и т. д.), можно сообщить самолету дополнительную тягу на взлете 600, 1200, 1800 кг.
Продолжительность действия РУ 20–30 секунд (и более) обеспечивает проходимость перегруженной машины над препятствиями. Стартовая РУ после взлета может быть сброшена на парашюте.
Для самолета Пе-2 четыре секции РУ на старте позволят увеличить бомбовую нагрузку на 200 % против нормального варианта нагрузки, а дальность увеличится на 800 км при средней величине разбега».
Среди других усовершенствований Королев предлагал также сделать реактивную модификацию бомбардировщика Петлякова «Пе-3», превратив его в высотный истребитель. На «Пе-3» он планировал поставить два реактивных двигателя, чтобы получить от них тягу в 600 килограммов. При этом «Пе-3» приобретал дальность полета около 1000 километров и высокие летные качества.
«В этом случае, — писал С. П. Королев в феврале 1944 года, — Пе-3 на участке догона противника по максимальной скорости становится на уровень новейших истребителей. Значительное увеличение скороподъемности и одновременно высоты боевого применения позволит с успехом использовать Пе-3 для уничтожения самолетов противника, идущих на большой высоте. Запас реактивного топлива на Пе-3 обеспечивает последнему выполнение ряда новых тактических задач».
Перед тем как осуществить идею превращения бомбардировщика «Пе-3» в истребитель, Сергей Павлович проверил ее на самолете «Пе-2» с моторами «М-82». Среди документов военных лет хранится полный расчет высотного истребителя на базе бомбардировщика за счет добавления двух ракетных двигателей. Схема его действия описывалась Королевым так:
«Самолет поднимается на бензиновых моторах до высоты 9000-11000 метров и совершает горизонтальный полет. При обнаружении летящего выше противника летчик переводит поршневые моторы на режим полного газа, включает реактивные двигатели РД-Д на полную тягу и в короткое время набирает нужную высоту. Далее, если необходимо догнать самолет противника, то дальнейший полет по горизонтали на «площадке» происходит при полной тяге РД-1 (на Н = 15000 м и Vmax = 785 км/час). Если же нужно продержаться на большой высоте, то это происходит на минимально потребной тяге и крейсерских режимах (V=500–660 км/час)».
Цифры, названные Королевым, не могли не поразить воображение: высота полета 15 километров (!), скорость — 785 км/ч. И это в то время, когда у лучшего истребителя Третьего рейха максимальная скорость на высоте 5 километров составляла 584 км/ч, а у нашего «Як-3» — 648 км/ч. А практический потолок бомбардировщиков тех лет был всего 7 километров,
И эта модификация была продумана и просчитана Королевым до деталей. Что же предусматривал этот проект? На «Пе-2» устанавливались два дополнительных турбокомпрессора, чтобы повышать давление воздуха, поступающего в моторы в условиях разряжения на большой высоте. Кабины штурмана и летчика заменялись одной герметической кабиной. Самолет максимально облегчался, снимались бомбовая нагрузка, часть горючего, оборудования и вооружения. Экипаж сокращался с трех человек до одного. Летчику-истребителю оставлялись две пушки калибром 20 миллиметров, располагавшиеся пол бомбовым отсеком. На самолете монтировалась мощная реактивная установка с двумя ЖРД и запасом реактивного топлива в 2100 килограммов.
Сама реактивная установка состояла из двух однокамерных ракетных двигателей, специальных приводов для вращения насосных агрегатов, кислотной и керосиновой систем и системы дренажирования, пусковой и электрической систем.
Сергей Павлович рассчитал два варианта размещения камер сгорания и автоматики для управления их работой. Первый вариант уже был опробован в полетах на первом самолете «Пе-2РУ». По этому варианту агрегаты «РД-1» устанавливались в хвосте. По второму варианту камера сгорания и автоматика помещались в задней части мотогондол. В этом случае получалась меньше длина кислотных трубопроводов высокого давления. Да и все оборудование размещалось более компактно, доступ к нему был прост и удобен. Но эта схема еще нуждалась в проверке.
«Расчетные данные, — писал Королев, — не дают основания предполагать возникновение в этом случае каких-либо нежелательных явлений, и при подтверждении экспериментом схема будет принята к осуществлению».
Отсеки центроплана, где располагались кислотные баки, герметизировались и снабжались аварийными сливами кислоты за борт на случай течи или прострела. Предусматривалось шесть баков для 1750 килограммов кислоты. Основной бак для керосина помещался в носовой части фюзеляжа, впереди герметической кабины. Общий запас керосина — 350 килограммов. Пуск двигателей осуществлялся нажатием кнопок, а регулирование режима работы — секторами газа.
Как же менялся вес самолета? Герметическая кабина весила 100 килограммов, реактивная установка — 250, реактивное топливо — 2100, турбокомпрессоры — 200 килограммов. Учитывая, что одновременно снималась часть оборудования, полетный вес высотного истребителя (9325 килограммов) был близок к весу бомбардировщика (8500 килограммов).
Таким образом, Сергей Павлович в этом своем проекте от разработки ускорителей для самолетов подошел к решению задачи обеспечения полета, как он говорил, «на высотах, больших винтомоторного потолка самолета при совместной работе бензиновых моторов и реактивных двигателей». Так самолет превращался в настоящий высотный ракетоплан.
Еще одним проектом ракетного самолета, которым занимался Сергей Королев, был модифицированный вариант бомбардировщика «Пе-2И» конструкции Владимира Мясищева.
«Пе-2И» представлял собой весьма радикальную переработку исходной конструкции. Во-первых, он проектировался под новые мощные моторы «М-107А». Во-вторых, крыло получило новый профиль, более подходящий для больших углов атаки. В-третьих, фюзеляж был расширен, чтобы разместить в бомбоотсеке бомбы нового образца — более короткие и толстые. Да и сама бомбовая нагрузка возросла до 3 тонн (против 1 тонны ранее).
Сергей Павлович с большим энтузиазмом взялся за разработку реактивного варианта нового самолета Мясищева.
«По своим боевым данным, — писал Королев, — самолет «И» с реактивной установкой в варианте бомбардировщика и истребителя оставит далеко позади все известные самолеты не только этих классов, но и одноместные истребители. Как бомбардировщик самолет Пе-2И с реактивной установкой будет неуязвим для истребителей с учетом роста их скоростей за период создания серийных машин типа «И». Как истребитель самолет «И», обладая высокими качествами, может быть использован для решения самых разнообразных истребительных задач. Реактивная установка, включаемая в необходимые моменты боя, обеспечивает ему решающее превосходство в воздухе над противником».
Идея Королева о применении ракетного двигателя для повышения высоты полета истребителя была осуществлена уже в ходе войны. Правда, не на самолетах «Пе-2», а на самолете конструкции Семена Алексеевича Лавочкина.
К разработке реактивной модификации истребителя «Ла-5» Сергей Павлович подошел обстоятельно. В записке к проекту он излагает свое видение двух возможных вариантов ракетного самолета «Ла-5ВИ» («Высотный истребитель»), отличающихся друг от друга реактивной установкой.
В конечном виде «Ла-5ВИ» должен был выглядеть следующим образом. Начальный вес самолета с полным запасом горючего и смазочного материала — 3200 килограммов, дополнительный вес реактивной установки (сухой) — 200 килограммов, еще 100 килограммов отнесено на счет герметичной кабины.
На самолете предусматривалась установка трех двигателей «РД-1» (тягой 300 килограммов): первоначально одного — в хвостовом коке (1-й этап), а затем еще двух — в гондолах, позади кислотных баков (2-й этап), или трехкамерного двигателя «РД-3» (тягой 900 килограммов) — в обоих случаях с приводом для вращения насосного агрегата от мотора. Для питания двигателя возможно также использование автономно действующего турбонасосного агрегата с расположением его позади кабины пилота. Однако, как пишет Королев, это представляется менее выгодным (по весу, габаритам, дополнительной необходимости в воздухе, воде, масле, подогреве и прочее) по сравнению с приводом от мотора при форсированных оборотах насоса для обслуживания трех камер.
В связи с тем, что на истребителях нет свободных объемов и очень строги требования центровки, Сергей Павлович предложил помещать топливо для ракетного двигателя в подвесных гондолах, под крыльями. По его мнению, потери в скорости от этого в полете до включения ракетного двигателя оказались бы невелики.
Рабочие высоты будущего истребителя должны были составлять 14–15 километров и даже доходить до 17 километров. Максимальная горизонтальная скорость возрастала согласно расчетам при тяге РУ 300 килограммов до 779 км/ч, при тяге 600 килограммов — до 900 км/ч и при тяге 900 килограммов — до 950 км/ч.
Оценивая предложение Королева, один из видных специалистов по тактике писал тогда: «По своим летно-техническим данным и по конструкции самолет ВИ (высотный истребитель) представляет собой самолет совершенно нового класса».
Проект «ВИ» Сергей Королев направил самому Лавочкину. И его предложение было осуществлено на самолете «Ла-7», к названию которого при этом добавилась буква «Р».
Истребитель «Ла-7Р» специально предназначался для перехвата немецких разведчиков над Москвой. Однако принять участие в боевых действиях он не успел. Фронт катился на запад, и необходимость в таком специализированном перехватчике отпала.

Схема расположения реактивной установки на истребителе «ВИ» (эскиз Сергея Королева)
Вообще идея вспомогательной реактивной установки на базе ЖРД Валентина Глушко и по конструктивной схеме Сергея Королева получила немалое распространение. Состоялось более 400 огневых испытаний двигателей «РД-1» и «РД-1ХЗ» на самолетах «Пе-2» конструкции Владимира Петлякова, «Ла-7Р» и «Ла-120Р» Семена Лавочкина, «Як-3» Александра Яковлева, «Су-6» и «Су-7» Павла Сухого.
В 1945 году летные испытания прошел самолет «Як-3». При включенном ракетном двигателе прирост скорости для этой машины достиг 182 км/ч.
Своеобразным признанием успехов Королева и Глушко стало участие самолета «Ла-120Р» в воздушном параде, состоявшемся 18 августа 1946 года в Тушино.
Академик Валентин Глушко, подводя итоги работы над самолетными ракетными двигателями, отмечал: «После завершения заводских испытаний на шести типах самолетов в 1945 году были проведены наземные и летные испытания нашего двигателя в летно-исследовательском институте. <…> Затем двигатели РД-1ХЗ и РД-2 успешно прошли государственные стендовые испытания, отчеты по которым утверждены Сталиным.
Успехом применения ЖРД на самолетах мы обязаны не только надежному двигателю, но также разработке и доводке самолетных систем силовой установки, над чем плодотворно трудился С. П. Королев».
В 1945 году за участие в разработке и испытании ракетных установок для боевых самолетов Сергей Королев, уже получивший свободу, был награжден орденом «Знак Почета».
Летающая лаборатория «Ц-1» («ЛЛ-1»)
И после окончания войны конструкторская мысль неоднократно возвращалась к идее ракетных самолетов. Во второй половине 1945 года коллектив, возглавляемый автором известных десантных планеров Павлом Владимировичем Цыбиным, начал проектирование специального самолета, предназначенного для практических экспериментов, связанных с проблемой выбора оптимальной формы крыла при полете на околозвуковых скоростях. Проектирование и постройка велись с учетом программы будущих исследований, разработанной учеными ЦАГИ с участием видных специалистов авиапромышленности.
В начале 1947 года летающая лаборатория, получившая обозначение «Ц-1» («Цыбин-одноместный»), была передана на испытания.
Конструкция экспериментального «Ц-1» была цельнодеревянной, обшивка — фанерная, фюзеляж — фанерный монокок, крыло — прямое, плоское, с двумя лонжеронами из дельта-древесины, оперение — обычное, крестообразное по виду спереди, с весовой компенсацией рулевых поверхностей. Перед полетом в емкости аппарата, как на планере, заливалось до тонны воды. Вместо обычного шасси применили двухколесную ось-тележку и подфюзеляжную лыжу.

Компоновка «Ц-1»
В качестве силовой установки для «Ц-1» избрали твердотопливный ракетный двигатель «ПРД-1500» тягой 1500 килограммов, созданный конструкторским коллективом инженера Ивана Картукова. По габаритам, весу и, главным образом, по большому значению развиваемой тяги и приемистости он наилучшим образом отвечал кратковременным расчетным режимам программы исследовательских и экспериментальных полетов. Двигатель устанавливался в хвостовой части самолета под оперением. Время его работы — 8-10 секунд. Это обеспечивало горизонтальный полет со скоростью до 900 км/ч.
Взлет и набор высоты «Ц-1» производил на буксире самолета «Ту-2». Сразу после отрыва от земли ось-тележка с колесами сбрасывались. На высоте 5–7 километров производилась отцепка буксирного троса и летчик-испытатель переводил «Ц-1» в режим пикирования под углом 45–60°. На участке установившегося прямолинейного пикирования он включал ракетный двигатель. В таком режиме скорость «Ц-1» достигала 1000–1050 км/ч (примерно 0,9 Маха).
За недолгие секунды крутого пикирования бортовая аппаратура фиксировала параметры натекающего воздушного потока, производилось фотографирование спектров обтекания, решались другие задачи полета. Крыло крепилось в фюзеляже на динамометрической подвеске (на четырех динамографах), позволяющей определять местные скорости в полете, распределение давления по крылу и оперению при подходе к критическим значениям числа Маха.
Затем тонна «балластной» воды сливалась из цистерн в атмосферу. Вдвое облегченный «Ц-1», как обычный планер, маневрировал и производил посадку на подфюзеляжную лыжу.
При стартовом весе в 2039 килограммов скорость отрыва «Ц-1» от взлетно-посадочной полосы была в пределах 150–160 км/ч, а после слива воды при весе около 1100 килограммов посадочная скорость не превышала 120 км/ч.
Первым «Ц-1» поднял в воздух летчик-испытатель Иванов. Последующие полеты на экспериментальной машине выполняли летчики Ахмет-Хан Султан, Анохин, Рыбко и другие. На «Ц-1» (его называли также «ЛЛ-1», «Летающая лаборатория-1» или «Экспериментальный планер № 1») было сделано более 30 полетов. На этом закончился первый этап исследовательских работ. Следующие по программе предусматривали изменение несущего комплекса аппарата.
Еще в 1946 году для второго фюзеляжа «Ц-1» с вертикальным оперением конструкторская бригада, руководимая инженером Бересневым, спроектировала два металлических крыла такой же площади и удлинения, как деревянное. Одно крыло имело прямую, а другое — обратную стреловидность по передней кромке с одинаковыми углами +30°. Было спроектировано и новое горизонтальное оперение прямой стреловидности с углом 40°. Стреловидные крылья, изготовленные из дюралюминия, установили на «Ц-1», который получил соответственно новые обозначения: «ЛЛ-2» (с крылом прямой стреловидности) и «ЛЛ-3» (с крылом обратной стреловидности). Консоли новых крыльев имели унифицированную заделку, то есть крепились в тех же узлах, что и прямые деревянные консоли «ЛЛ-1». Поэтому изменения центровки аппарата при перестановке крыльев были компенсированы весовой балансировкой воды в носовой и хвостовой емкостях фюзеляжа. Расчеты оптимальной заправки цистерн дали приемлемые запасы устойчивости для обоих вариантов крыла.

Летающая лаборатория «ЛЛ-3»
В полетах на «ЛЛ-3» (а их выполнили около 100) были достигнуты несколько большие скорости пикирования, чем на «ЛЛ-1» с прямым крылом, соответствующие числам Маха = 0,95-0,97. В результате удалось подробно изучить свойства малоизвестных крыльев обратной стреловидности и в целом самолета с ними.
Вариант под названием «ЛЛ-2» решили в воздухе не испытывать, так как в 1948 году стреловидные крылья с углом 35° были всесторонне проверены на самолетах-истребителях «МиГ-15» и «Ла-15». К тому же деревянная конструкция первого корпуса «Ц-1» за время эксплуатации успела поизноситься и уже не гарантировала безопасности полета.
Исследовательские полеты ракетоплана «Ц-1» в вариантах «ЛЛ-1» и «ЛЛ-3» дали ученым уникальные материалы по аэродинамическим характеристикам самолетов с разными крыльями, распределению давления потока по хорде и размаху, возникновению и перемещению ударных волн (скачков уплотнения) и срывных зон потока за ними на критических значениях чисел Маха, особенностям и изменениям параметров пограничного слоя и так далее.
Главной целью группы Цыбина при испытаниях было разобраться с возможными проблемами на пути создания скоростных самолетов и отработать аэродинамическую компоновку легкого реактивного истребителя. Однако реализовать этот замысел им в полной мере не удалось. В 1947 году началась первая в истории СССР «конверсия» оборонной промышленности. КБ Цыбина закрыли, а завод перевели на выпуск гражданской продукции.
Истребитель-перехватчик «И-270»
Экспериментальный истребитель-перехватчик «И-270» разрабатывался ОКБ Артема Микояна для частей ПВО крупных промышленных объектов и военных баз и должен был обладать высотой боевого применения 16–17 километров и скоростью 1100 км/ч. Для обеспечения этих требований в качестве силовой установки для нового истребителя был выбран жидкостный ракетный двигатель.
Самолет создавался под влиянием конструкции ракетного перехватчика «Me-263-VI», захваченного в Германии на полигоне в Дассау (этот ракетоплан мы обсуждали в главе 2). Из-за того, что специалисты ЦАГИ долго не могли подобрать оптимальную форму и угол стреловидности крыла, постройку истребителя к установленному правительством сроку (ноябрь 1946 года) завершить не удалось. Первый экземпляр «И-270» («Ж-1») выпущен из производства только 28 декабря 1946 года.
«И-270» представлял собой цельнометаллический свободнонесущий среднеплан с фюзеляжем круглого сечения (полумонокок). Фюзеляж имел разъем для расстыковки на две части. Вырез внутри центральной части фюзеляжа служил для установки крыла, которое представляло собой неразъемный пятилонжеронный кессон с толстыми металлическими панелями обшивки. Хвостовое оперение выполнено Т-образным, для уменьшения влияния крыла на горизонтальное оперение. Основные стойки шасси, имевшие очень узкую колею — 1,6 метра, убирались в центральную часть фюзеляжа, в нишу под крылом. Ниша носовой стойки и две пушки «НС-23» калибра 23 миллиметра с боезапасом на 40 патронов располагались под герметичной кабиной летчика. В ходе испытаний они не устанавливались.

Экспериментальный истребитель-перехватчик «И-270» («Ж-1»)
Взлетная масса экспериментального истребителя составляла 4120 килограммов. Запаса топлива должно было хватить на 4–9 минут полета.
Силовая установка включала двухкамерный ЖРД «РД-2М-ЗВ» конструкции Леонида Душкина и Валентина Глушко. Этот двигатель являлся развитием ЖРД «Walter HWK 509С-1». Две камеры сгорания были расположены в хвостовой части фюзеляжа одна над другой и развивали суммарную тягу 1450 килограммов. ЖРД работал на смеси азотной кислоты с керосином и 80 %-ной перекиси водорода. Общий запас компонентов горючего — 2120 килограммов. Подача топлива и окислителя — насосная. Привод всех насосов — от бортовой электросистемы, куда входили электрогенератор, связанный с турбонасосным агрегатом ЖРД, и один генератор с приводом от небольшого двухлопастного винта в носовой части фюзеляжа, вращающегося от набегающего потока. Топливная система самолет