home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add

реклама - advertisement




Машина Мак-Каллоха и теоремы Геделя

Возможно, читатель уже отметил определенное сходство приведенных выше задач с некоторыми свойствами первой машины Мак-Каллоха. В самом деле, работа этой машины оказывается связанной с теоремой Гёделя, и вот каким образом.

7. Пусть у нас имеется некоторая математическая система, приводящая к набору утверждений, одни из которых называются истинными, а другие — доказуемыми. Мы предполагаем также, что эта система правильная, то есть каждое доказуемое в ней утверждение является истинным. Далее, пусть каждому числу N ставится в соответствие некоторое утверждение, которое мы будем называть утверждением N. Предположим наконец, что наша система удовлетворяет следующим двум условиям.

Условие Мс1. Для любых чисел X и Y, если число X порождает число Y в первой машине Мак-Каллоха, утверждение 8Х истинно тогда и только тогда, если утверждение Y доказуемо. (Напомним, что число 8Х это не 8, умноженное на X, а цифра 8, за которой стоит число X.)

Условие Мс2. Для любого числа X утверждение 9X истинно тогда и только тогда, если утверждение X не является истинным.

Найдите такое число N, при котором утверждение N истинно, но недоказуемо в данной системе.

8. Предположим, что в условии Mс1 говорится не о «первой машине Мак-Каллоха», а о «третьей машине Мак-Каллоха». Попробуем теперь найти такое утверждение, которое было бы истинным, но недоказуемым.

9. Парадокс ли это?

Вернемся вновь к задаче 1, однако внесем в нее некоторые изменения. Вместо символа Р мы будем использовать символ В (в силу определенных психологических причин — каких именно, станет ясно из дальнейшего). Определение «утверждения» остается тем же, что и раньше, только на этот раз символ Р везде заменяется на символ В. Таким образом, наши утверждения принимают теперь вид: В-X, NB-X, ВА-X, NBA-X. Все утверждения, как и прежде, делятся на две группы — истинные и ложные, причем нам не известно, какие именно из утверждений истинны, а какие — ложны. Далее, вместо машины, печатающей различные утверждения, у нас теперь имеется ученый-логик, который верит одним утверждениям и не верит другим. Когда мы говорим, что наш логик не верит какому-то утверждению, мы вовсе не имеем в виду, что он обязательно сомневается в нем или отвергает его; просто неверно, что он верит в это утверждение. Другими словами, он либо считает его ложным, либо вообще не имеет о нем никакого мнения. Таким образом, символ В (от англ. believe — верить) означает «то, во что верит логик». Тогда для любого выражения X у нас есть четыре интерпретации выражений, содержащих X:

В1: утверждение В-X истинно тогда и только тогда когда логик верит в X;

В2: утверждение NB-X истинно тогда и только тогда когда логик не верит в X;

В3: утверждение ВА-X истинно тогда и только тогда когда логик верит в X–X;

В4: утверждение ВА-X истинно тогда и только тогда, когда логик не верит в X–X.

Предполагая, что наш логик точен, то есть что он не верит в ложные утверждения, мы можем, разумеется, найти некое утверждение, которое является истинным, но о котором логик не знает, что оно истинно. Таким утверждением будет высказывание NBA-NBA (которое говорит нам о том, что логик не верит в ассоциат выражения NBA, имеющий вид NBA-NBA).

А дальше начинается нечто интересное. Предположим, нам известно об этом ученом-логике следующее.

Обстоятельство 1. Наш ученый-логик знает логику не хуже нас с вами. Предположим, что он обладает абсолютными логическими способностями; это означает, что если ему заданы какие-нибудь логические посылки, то он может вывести из них все возможные суждения.

Обстоятельство 2. Логику известно, что выполняются условия В1, В2, В3 и В 4.

Обстоятельство 3. Логик всегда точен, то есть он не верит в ложные утверждения.

Далее, раз логику известно, что имеют место условия В1, В2, В3 и В4, и он может рассуждать так же логично, как мы с вами, ничто не мешает ему провести те же рассуждения, которые провели мы, прежде чем доказали, что утверждение NBA-NBA должно быть истинным. Ясно, что, как только он это проделает, он сразу поверит в утверждение NBA-NBA. Но как только он в него поверит, это утверждение становится опровергнутым, ибо смысл данного утверждения как раз и заключается в том, что наш логик в него не верит, — тем самым в конце концов окажется, что наш логик неточен!

Итак, не приходим ли мы к некоему парадоксу, если принимаем обстоятельства 1, 2 и 3? Конечно, нет, никакого парадокса здесь нет. Просто в последнем абзаце моего рассуждения допущена намеренная неточность! Не могли бы вы ее обнаружить?


Две машины, толкующие о себе, а также друг о друге | Принцесса или тигр | Решения