home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add




Свет, эфир (Ньютон, Гюйгенс)


Рассуждения на тему, какой именно раздел физики (или любой другой науки) сыграл в ее развитии наибольшую роль, всегда условны и несколько схоластичны.

Можно только с уверенностью сказать, что во все времена свет (позднее — вообще электромагнитные явления) находился в центре внимания физиков. Можно сказать, что передовая линия фронта физики всегда в большей или меньшей степени была связана с электромагнетизмом. В результате изучения электромагнитных явлений возникли и специальная теория относительности, и квантовая механика, и (полезно помнить!) такие технические достижения, которые привели к полному изменению жизни человечества.

Прежде всего — немного истории.

Пионерами на этом пути были Ньютон (снова Ньютон!) и Ганс Христиан Гюйгенс (1629–1695).

Современник Ньютона, по своему гению, безусловно, второй физик того века, Гюйгенс («славнейший Гугениус» — как почтительно писал М. В. Ломоносов) оставил след во многих областях физики.

Помимо классических работ в области оптики, ему принадлежат великолепные труды по астрономии и особенно по механике. Ему же мы обязаны изобретением первых точных часов (часы с маятником) — открытием, которое по значению можно спокойно поставить рядом, например, с созданием реактивной авиации.

Сам Ньютон говорил о нем: «великий Гюйгенс», а президент Королевского общества и первый физик мира не был слишком щедр в своих оценках…

Поскольку разговор зашел о свете, имеет смысл хотя бы очень и очень поверхностно коснуться его истории, ибо тут можно найти неожиданные и любопытные факты.

Сведения об изучении света у греков и римлян, которыми мы располагаем, крайне отрывочны, но тем не менее достаточно интересны.

Оптики античности.

То, что греческие, а за ними римские философы умели создавать весьма сложные и тонкие умозрительные теории, общеизвестно. Однако обычно считают, что едва ли не основная особенность античной науки — сознательное пренебрежение экспериментом. И очевидно, это утверждение довольно справедливо.

Природа отплатила за это древним полной мерой. Можно только поражаться, насколько низок был уровень развития физики по сравнению с математикой.

Но в оптике положение, по-видимому, было несколько иное. Существовало большое число самых различных теорий, которые в высшей степени гипотетичны. Кстати, и атомистическая теория света Демокрита и Эпикура не являет исключения. Все теоретические построения абстрактны, умозрительны и не основаны на эксперименте.

Но есть данные, заставляющие серьезно задуматься над тем: действительно ли греки так уж полностью пренебрегали экспериментальной физикой?

В трактате по оптике Птолемея вдруг можно обнаружить углы преломления световых лучей на границе воздух — вода. Причем значения этих углов с высокой степенью точности совпадают с истинными. Очевидно, Птолемей экспериментировал.

Римские историки сообщают, что близорукий император Нерон использовал для улучшения зрения отшлифованный изумруд. Следовательно, принцип очков — прибора совершенно уникального значения — был известен в древности.

Надеюсь, по крайней мере у близоруких читателей не вызовет возражений такая оценка роли очков в истории человечества.

Наконец, знаменитая легенда об Архимеде, который будто бы зажег при помощи зеркала римские корабли, осаждавшие Сиракузы, тоже свидетельствует об экспериментальной работе в области оптики.

Вероятнее всего, сама история целиком вымышлена. Но появиться она могла только в том случае, если хорошо известно фокусирующее действие вогнутых зеркал.

Есть еще десятки сообщений, которые заставляют предполагать, что многие чисто опытные данные в области оптики (особенно геометрической) были хорошо известны эллинам.

Все эти факты внушают сильные подозрений в том, что мы хорошо осведомлены о состоянии науки в древнем мире. Однако… по современным данным, в античном мире физики как науки экспериментальной не существовало.

С начала эпохи Возрождения возобновляется интерес к оптике. Изобретают (или вновь открывают?) очки.

Леонардо да Винчи в своих разбросанных записях высказывает иногда совершенно блестящие идеи. Появляются интересные работы и других ученых. Но все это только отдельные разрозненные мысли.

Перелом наступает в начале XVII столетия. И связан он все с тем же именем — Галилео Галилей!

Галилей в оптике.

Дело не в том, что Галилей создал новую стройную теорию световых явлений. Нет, этого не было. Он считал, что свет — это поток мельчайших неделимых частиц, и был в этом не нов.

Галилей построил совершенные оптические приборы. Но их делали и до него.

У Галилея есть любопытнейшие наблюдения по различным вопросам физической оптики (например, фосфоресценция). Но они отрывочны, разбросаны и сами по себе не сыграли значительной роли в истории развития науки о свете.

Но в оптике, как и в механике, Галилей первый последовательно применил новый метод исследования.

В оптике, как и вообще в физике, он всегда и прежде всего экспериментирует.

И подобная, совершенно новая для того времени постановка научных проблем наталкивает его на поразительный вопрос: «С какой скоростью распространяется свет?»

Собственно, сам-то вопрос не так уж неожидан. Удивительно то, как он сформулирован. Галилей не плавает в бесконечных рассуждениях: почему и отчего свет должен распространяться с конечной или бесконечной скоростью? Заниматься подобными домыслами он предоставляет современникам. Сам же он мыслит конкретно: «Можно ли придумать опыт, позволяющий определить скорость света?»

Эта проблема обсуждается знакомыми нам Сальвиати, Сагредо и Симпличио на страницах «Бесед» — последней и самой замечательной работы Галилея.


Очевидное? Нет, еще неизведанное…

Симпличио пробует заметить, что повседневный опыт убеждает в мгновенном распространении света.

«Если вы наблюдаете с большого расстояния действие артиллерии, то свет от пламени выстрелов без всякой потери времени запечатлевается в нашем глазу в противоположность звуку, который доходит до уха через значительный промежуток времени».

Но подобные соображения не стоит высказывать такому физику, как Галилео Галилей. И Сагредо (Галилей) тут же снисходительно объясняет:

«Ну, синьор Симпличио, из этого общеизвестного опыта я не могу вывести никакого другого заключения, кроме того, что звук доходит до нашего слуха через большие промежутки времени, нежели свет; но это нисколько не убеждает меня в том, что распространение света происходит мгновенно и не требует известного, хотя и малого, времени. Не более того дает мне и другое наблюдение, которое выражают так: „Как только Солнце поднимается на горизонте, блеск его тотчас же достигает наших очей“.

В самом деле, кто может доказать мне, что лучи его не появились на горизонте ранее, нежели дошли до наших глаз?»

И далее Сальвиати рассказывает об опыте, который, очевидно, проделал Галилей, пытаясь определить скорость света, но не получил никакого результата. Схема опыта Галилея в принципе предугадывает схемы всех опытов по определению скорости света в земных условиях.

Галилей пытается определить скорость света.

Два наблюдателя находятся на значительном расстоянии друг от друга (несколько километров). Они снабжены фонарями с заслонками. Первый в момент t0 открывает заслонку, и через некоторое время свет достигает второго участника опыта. Последний сразу открывает свой фонарь, и первый наблюдатель фиксирует тот момент времени t1, когда он увидел свет от фонаря второго наблюдателя.


Очевидное? Нет, еще неизведанное…

Считая, что свет по всем направлениям распространяется с одной и той же скоростью, и зная расстояние между участниками — r, находим скорость света:

C = 2r/(t1 – t0).

Нам-то понятно, что такой опыт в лучшем случае позволит определить скорость реакции наблюдателей, но не скорость света. Но Галилей еще не представлял себе, как исключительно велика скорость распространения световых волн.

Естественно, у Галилея не возникает вопроса: как меняется скорость света при переходе от одной системы отсчета к другой? Вопроса, который затем мучил физиков два с лишним столетия. Но этого и нельзя ожидать. Достаточно и того, что в оптике Галилей первым подошел к изучению проблемы как физик. Сначала точный эксперимент, и только на его основе — теория.

После Галилея надо назвать его соотечественника Франческо Мария Гримальди (1618–1663). Учитель риторики, а затем математики в иезуитских коллегиях Болоньи, он всю жизнь посвятил изучению оптических явлений.

Гримальди очень не повезло в истории науки. Он не был способен к большим теоретическим обобщениям и не мог толково объяснить собственных наблюдений. Может быть, в подобной ограниченности значительную роль сыграло то обстоятельство, что он был примерным членом иезуитского ордена и всю свою жизнь боролся против идей Коперника и Галилея.

Но экспериментатор Гримальди был выдающийся. Достаточно сказать, что он открыл интерференцию, дифракцию и разложение солнечного света в спектр при помощи призмы (дисперсию света). В его теоретических представлениях уже содержатся некие элементы волновой теории света. Однако (и это не вина, но беда Гримальди) работы Ньютона были посвящены тем же вопросам и настолько превосходили труды Гримальди, что довольно понятно, почему после появления «Оптики» он был основательно забыт.

До Ньютона теорией световых явлений много занимались и Декарт и особенно Гук. Однако Декарт в большей степени был математик и философ, чем физик, а Гук, как обычно, не доводил ничего до конца и в основном бросал идеи (правда, идеи замечательные).

«Частицы» или «волны»?

Первая теория световых явлений, заслуживающая этого названия, дана Ньютоном. Как помните, даже в механике он не обошелся без гипотез. Но там они скрыты, завуалированы.

В оптике гипотезы необходимы. Слишком разнообразны по своей природе оптические явления, чтобы можно было установить несколько единых принципов. Необходимо объединяющее все эти факты предположение — гипотеза.

Весь известный во времена Ньютона материал показывал, что конкурировать могут только две гипотезы:

корпускулярная: свет — поток частиц;

волновая: свет — это волновое движение.

Ньютон скорее склонялся к первой идее, а Гюйгенс последовательно развивал вторую.

К началу XIX столетия спор как будто был окончательно решен в пользу Гюйгенса. Не оставалось никаких сомнений в том, что свет — это волны.

Впрочем, физика XX века реабилитировала Ньютона и в этом пункте.

Пожалуй, стоит несколько напомнить, что такое волновое движение, поскольку в данном случае неглубокие повседневные наблюдения могут основательно затруднить правильное понимание.

Бросив в воду камень и наблюдая, по совету Козьмы Пруткова, разбегающиеся волны, мы обычно вполне удовлетворяемся фразой: «Волны распространяются с такой-то скоростью». Мы можем даже измерить эту скорость, не очень задумываясь, что же в действительности переносится в процессе волнового движения, каким образом ведут себя частицы той среды, в которой распространяется волна.

Волновое движение — это процесс передачи энергии, происходящий в какой-то среде. Частицы среды при этом колеблются около равновесных положений.

Нечто вроде определения!

Распространение волны заключается в том, что все новые и новые частицы среды начинают колебаться. Причем они могут смещаться совсем не в направлении распространения волны…

Игра в «испорченный телефон» неплохо иллюстрирует так называемую продольную волну. Какая-то фраза передается с одного конца цепочки участников игры на другой, но не непосредственно, а каждый говорит на ухо лишь ближайшему соседу.

Вообще говоря, «испорченный телефон» — аналог волнового движения в поглощающей и искажающей волны среде.

Еще более точная аналогия — сигнальная эстафетная служба, широко распространенная у древних. Есть несколько десятков курьеров. Получив сведения, первый бежит на соседний пост, сообщает другому и возвращается назад; второй бежит к третьему и т. д. Такая эстафета воспроизводит продольную волну; «передаваемой энергией» является сообщение, а «частицами среды» — курьеры.

В продольной волне смещения частиц происходят в направлении движения волны.

Нетрудно подыскать житейскую аналогию для поперечной волны. В ней частицы среды смещаются перпендикулярно распространению волны.

Если в большой стае птиц, сидящих рядком на проводе, крайнюю взволнует какая-то ложная тревога, она взлетит, а потом, убедившись, что все спокойно, сядет на место. Ее соседки проделают то же самое, но с некоторым запаздыванием во времени. Беспокойство постепенно распространится по всей стае, и когда на одном конце все уже успокоится, на другом волнение может оказаться в полном разгаре.

Как почти любая аналогия, приведенный пример очень грубо и неточно иллюстрирует волновое движение.

Здесь передается тревога («энергия»!), а птицы («частицы среды») двигаются перпендикулярно к направлению распространения сигнала.

Итак, частицы среды, в которой распространяется волна, только колеблются около положения равновесия. Если начальное возбуждение имеется в одном месте, то волна может распространяться только при условии, что частицы среды связаны между собой. Это совершенно понятно.

Менее тривиально такое замечание: волна будет распространяться без всяких искажений и потерь только в том случае, когда силы связи между частицами среды имеют совершенно определенный характер — так называемые упругие силы. Такая среда называется идеально упругой и вообще-то представляет собой некоторую идеализацию. Но известно много тел, в которых волны распространяются с очень малыми потерями энергии. Между прочим, эти тела и среды могут быть совершенно различны по своим прочим свойствам. Например, стальной стержень и воздух.

Что упругие свойства воздуха в известном смысле очень хороши, убеждает, например, то, что, разговаривая, мы слышим друг друга на расстоянии нескольких десятков метров. Чрезвычайно малой энергии колебаний голосовых связок достаточно (если бы все люди на Земле подняли крик, они развили бы мощность всего лишь 10 л. с.), чтобы звуковая волна распространилась на десятки метров, прежде чем она поглотится средой.

Впрочем, разговор о свойствах упругих тел завел бы нас слишком далеко. Отметим только, что в твердых упругих телах могут образовываться волны обоих типов — продольные и поперечные. А в глазах возникают только продольные волны.

Пожалуй, наиболее яркими свойствами волнового движения — своеобразным «паспортом» — являются интерференция и дифракция. Суть обоих этих явлений очень проста, но почему-то дифракцию обычно представляют себе хуже, чем интерференцию.

Дифракция — это огибание препятствия волной. Если на пути распространения волн на воде окажется камень, то в образованном за камнем конусе резкой волновой тени не образуется. Волновое движение частично «захлестнет» и ту область, которая находится в «тени».

Скороговорка о важнейших свойствах волнового движения.

При прочих равных условиях огибание препятствия тем значительней, чем больше отношение длины волны к размерам преграды.


Очевидное? Нет, еще неизведанное…

Поэтому можно слышать голос человека, рот которого прикрыт ладонью и не виден. Звуковые волны легко огибают ладонь, а дифракция световых волн слишком мала, чтобы обогнуть это препятствие. Иначе говоря — чем меньше длина волны, тем труднее наблюдать дифракцию.

Дифракцию видимого света, впрочем, можно обнаружить при помощи сравнительно простых приспособлений, но дифракция рентгеновых лучей наблюдается при рассеянии на таких препятствиях, как отдельные атомы.

Интерференция — непосредственное следствие принципа суперпозиции.

Ученый характер фразы не должен смущать. Содержание принципа суперпозиции очень ясно. «Когда в одной точке действуют несколько возмущений, то, чтобы выяснить окончательный результат, их следует просуммировать».

А суммируя даже две одинаковые волны, можно получить самые различные результаты в зависимости от разности фаз этих волн (кстати, неплохая аналогия явления интерференции — закон сложения сил). В частности, теоретически вполне возможен случай, когда при громком разговоре двух людей в комнате устанавливается абсолютная тишина.

По ряду причин именно этот эффект отсутствует, но всегда можно создать экспериментальные условия для наблюдения интерференции. И в оптике, и в акустике, и при изучении упругих волн в твердых телах интерференцию легко наблюдать.

Может быть, наиболее трудно воспринимается еще одно замечательное свойство волн — поляризация, но пока мы «минуем это препятствие».

Изучая свет, физики наблюдали эффекты, которые явно указывали на его волновую природу. Интерференцию и дифракцию, как помните, наблюдал еще Гримальди. За ним Гук, Ньютон и Гюйгенс в своих опытах неоднократно наталкивались на те же явления.

Здесь заканчиваются обрывочные замечания о волнах и (внимание!) снова появляется эфир.

Но если принять, что свет — волновое движение, необходимо, казалось бы, предположить, что существует какая-то материальная среда, в которой это движение происходит. Иначе говоря — необходим эфир.

Эфир, который у Декарта появился в результате чисто умозрительных спекуляций.

Эфир, который был принят Ньютоном, хотя всю свою жизнь он относился к нему крайне подозрительно.

Эфир, по поводу которого Ньютон к концу своих дней просто избегал говорить что-либо определенное.

Этот эфир у Гюйгенса как будто впервые получает реальное обоснование.

Что же понимали физики до начала XX века под эфиром?

Изучение звуковых волн в воздухе и упругих телах убеждало, что волновое движение возможно только в сплошных средах. А если свет — это волны, то, очевидно, все наше пространство залито какой-то сплошной средой, обладающей чрезвычайно удивительными свойствами.

Свойства этой среды удивительны потому, что ни один физический опыт, кроме опытов со светом, не давал возможности обнаружить ее существование.

С другой стороны, представить себе распространение волн без наличия какой-то материальной среды физики не могли[31]. Ведь их опыт (волны в воздухе, на поверхности воды, в упругих телах) заставлял считать, что волны могут распространяться только в среде, состоящей из каких-то частиц, связанных между собой.

Ученые вообще любят мыслить аналогиями. Но здесь она не та, что напрашивалась, ее немыслимо было избежать!

И торжество волновой теории одновременно ознаменовалось победой гипотезы эфира.

Идея Декарта о существовании некоей тончайшей материи materia subtilis[32], заливающей всю вселенную, вместе с волновой теорией света завоевывает умы физиков.

Все последующие годы — это годы споров о свойствах эфира. Эфир Гюйгенса во многом не похож на эфир Декарта, а эфир XIX столетия наделяется совершенно новыми свойствами. Но гипотеза о существовании эфира в той или иной форме прочно входит в физику.

Но если вся вселенная залита некоторой «жидкостью» (или «газом») — эфиром, то, казалось бы, решен вопрос о существовании системы отсчета, настолько выделенной по своим свойствам, что ее можно считать абсолютной.

«Слушайте, слушайте!» (как любят говорить англичане).

Эта система отсчета — покоящийся эфир.

Движение относительно эфира — абсолютное движение.

Несущественно, что, исследуя механические явления, невозможно отличить абсолютное движение от относительного.

Мы найдем такие световые явления, которые позволят наблюдать неподвижный эфир.

Так мы определим абсолютную систему. Между прочим, если принять существование эфира, довольно естественно предположить, что центробежные силы возникают именно при вращении относительно эфира.

Открываются новые перспективы для объяснения природы инерциальных и неинерциальных систем отсчета.

Взаимодействие через эфир, возможно, позволит объяснить механизм тяготения.

Гипотеза эфира выглядит как будто очень привлекательной, даже если отвлечься от попытки объяснить свойства света.

Так в конце XVII столетия завязывается в физике тот узел, разрубить который довелось Альберту Эйнштейну в 1905 году.


хотя и весьма расплывчатая, но тем не менее в конце, после долгих отступлений, объясняет, почему именно гипотеза эфира стала особенно привлекательной для физиков | Очевидное? Нет, еще неизведанное… | посвященная обоснованию волновой теории света. Терпеливый читатель, возможно, получит удовольствие, познакомившись с очень тонкими и далеко идущими выводами, кото